

In Class Review 2

- 1. Batteries ______ voltage. Resistors _____ voltage.
- 2. Fill in the voltages around the circuit above.
- 3. Power:
 - A. Find the total power of the above circuit:
 - B. Find the power used by the 1 Ω resistor.
 - C. Find the power dissipated by the 6 Ω resistor.
 - C. Find the power used by the 9 Ω resistor.
 - D. If all the resistors were lights, which would be the brightest?
 - E. Which resistor will generate the most heat?
- 4. What's the current running through the 9 Ω resistor?
- 5. What's the current running through the 6 v battery?
- 6. What's the voltage from G to F?
- 7. What's the voltage from F to A?
- 8. What's the voltage from B to D?

9. Find the current in each of the amp meters in the following circuits. (And label the diagram.)

- 10. What's the voltage used by the 8 Ω resistor?
- 11. What's the total power dissipated by the circuit?
- 12. What's the power dissipated by the 16 Ω resistor?
- 13. Which branch will be the brightest (if they were lights) and why?
- 14.A 4 μ C charge and a –7.4 μ C are 2 mm away from each other. Find the force between them.
- 15.Regarding #1: will they attract or repel?
- 16.If they touch each other what will happen?
- 17.If the 2.2 μC charge touches ground what will happen?
- 18.If the $-1.2~\mu C$ touches ground what will happen?
- 19.If your electric company's power rate is \$.11 per kWhr, find out how much it costs to run a 90w light bulb 8 hours a night for a month.