2008 Light 4

1. Define the following variables:

А.	h	D.	f
B.	М	E.	h'
C.	q	F.	р

2. + or—? (Work HARD on this, for it holds the key to most of the optics part of this chapter.)

A.	f for concave mirror	J	_ q if the image is on the same	Q	q if the image is on the opposite
В.	f for concave lens		side of a lens as the object.		side of the lens from the object.
C.	f for convex lens	K	h' if the image is on the same	R	q for a real image
D.	f for convex mirror		side of the mirror as the object.	S	M for divergent devices
E.	p for convex mirror	L	_ f for divergent devices	Т	q for a virtual image
F.	p for convex lens	М	_ M for a virtual image.	U	M for a real image
G.	q for divergent devices	N	h for a real image	V	h' if a real image
H.	if the image is inside a mirror	O	_ f for convergent devices	W	h' for divergent devices
I.	p for divergent devices	Р	_ p for convergent devices	X	q for convergent devices

Let's use some easy questions to better understand magnification.

- 3. Object is 10 cm tall. Image is virtual and 5 cm tall.
 - A. Image is magnified or reduced?
 - B. Image is upright or inverted?
 - C. Calculate M

- 5. Object is 2 cm tall. Image is <u>real</u> and –6 cm tall.
 - A. Image is magnified or reduced?
 - B. Image is upright or inverted?
 - C. Calculate M
- 4. Object is 15 cm tall. Image is <u>real</u> and -5 cm tall.A. Image is magnified or reduced?B. Image is upright or inverted?
 - C. Calculate M

- 6. Object is 4 cm tall. Image is virtual and 12 cm tall. A. Image is magnified or reduced?
 - B. Image is upright or inverted?
 - C. Calculate M
- 7. Using the above information, answer the following questions about M.
 - A. If M is positive, is the image real or virtual?
 - B. If the absolute value of M (|M|) is greater than 1, then the image is magnified or reduced?
 - C. If the absolute value of M is less than 1 (between 0 and 1), then the image is magnified or reduced?
- M for a lens is -2.3. Is the image A. magnified or reduced?
 B. real or virtual?
 - B. real or virtual?

- 9. M for a mirror is 0.34. Is the image
 - A. magnified or reduced?
 - B. real or virtual?
- 10. For the following mirrors and lenses, use your notes to figure out exactly where the light will go.

2008 Light 4

- 12. Use the above diagram to answer the following questions.
 - A. Label h, h', p, q.
 - B. Draw straight lines from the top and bottom of the object to the lens and show what will happen when they pass thru the lens.
 - C. Calculate the focal length. (*You MUST give variables, equation, show work, and answer.*) Variables: Equation: Solve:

D. Calculate the magnification of the lens.Variables:Equation:Solve:

- 13. The object is 9 cm to the left of a convex mirror that has a focal length of 3 cm.
 - A. Convergent or divergent?
 - B. Real or virtual focal length?
 - C. Is f positive or negative?
 - D. Calculate the distance to the image.
 - Variables: Equation: Solve:

Bellwork:

14. There are two unicellular organisms in a Petri dish. If the nucleus from Organism A is removed and the DNA from Organism B is inserted into A, what characteristics will Organism A have when it reproduces? A or B?

DNA

- 15. At the right are two strands of genetic code. The left nucleic acids are completed. Fill in the right side with the correct nucleic acid pairs.
- 16. DNA or RNA
 - A. _____Found in the nucleus, but only temporarily.
 - B. _____Does not have uracil.
 - C. ____Only found in the nucleus.
 - D. _____Tied together with deoxyribose.

Copyright © 2008, C. Stephen Murray