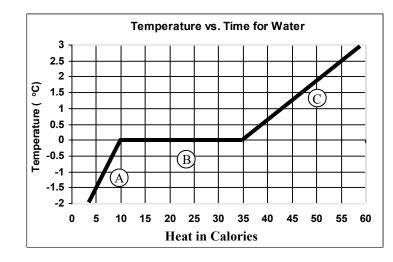

PreAP: Due: Wed., Feb 19 (Assigned: Fri., Feb 17) Reg: Due: Thurs., Feb 23 (Assigned: Tues., Feb 21)

Harmonic Motion 7

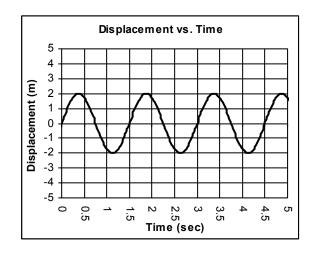
1. Boundary	A. The part that is moved to give energy to the wave.	8. Position vs. Time # of cycles:
2. Standing wave	B. Where a harmonic's amplitude is greatest.	20
3. Harmonic	C. Where the harmonic has no motion.	9 Period:
	D. A wave that is a multiple of another wave.	
4. Fundamental		Frequency:
5. Driven end	E. A wave that is trapped within boundaries.	Amplitude:
6. Node	F. The first harmonic of a standing wave, equal to 1/2 its wavelength.	0
7. Anti-node	G. A place that limits a wave's motion.	0 .25 .5 .75 1 1.25 Time (sec)
7. Anti-node	G. A place that limits a wave's motion.	0 .25 .5 .75 I 1.25 Time (sec)

9. A fellow student shows you the frequencies of four harmonics of a string: 12 Hz; 24 Hz; 29 Hz; 48 Hz. Which one would you question and why?

- Use the Standing wave diagram at the right to answer the following.
 A. Find its period (f is below the harmonic).
 - B. What harmonic is this? _____ C. Draw the wave form on the harmonic (as if freeze-framed).
 - D. Mark the nodes (N) and anti-nodes (AN).
 - E. Find the fundamental frequency of this harmonic (H_1) .
 - F. Find the frequency of harmonic 6.
 - G. Can we hear this frequency? _____ H. How many wavelengths is the harmonic?
- 11. When hammering on steel, you hear your echo come back 2.4 seconds later. How far away is the object it echoed (reflected) off of?
- 12. A guitar has standing waves.
 - A. Where are its boundaries?
 - B. What is the driving force (that causes the vibration)?
- 13. A string with a natural frequency of 15 Hz. Give the next three frequencies of harmonics:
- 14. Use the graph to answer the following:
 - A. Which harmonic is it?
 - B. Mark the antinodes.
 - C. What is its amplitude?
 - D. What is its wavelength?
 - E. If it is a sound wave use D to find its frequency.
 - F. Find the frequency of H_1 (the natural frequency).
- 15. Which has more heat: a cold ocean or a hot cup of water?
- 16. Which has a higher temperature: a cold ocean or a hot cup of water?
- 17. Would you expect wood to have a high or low specific heat?



120 Hz


Why?

- 18. Is segment B increasing in temperature?
- 19. What phase is segment A?
- 20. What phase is segment B?
- 21. What do we call the temperature of segment B?
- 22. Why isn't segment B rising?
- 23. What do we call the heat it is gaining at B?

HONORS PHYSICS CONTINUE; REGULARS PHYSICS IS FINISHED

- 24. Given this equation: $x = (4cm)cos(2\pi t)$ answer the following:
 - A. What is the wave's amplitude?
 - B. Find the wave's period.
 - C. Give the wave's velocity equation:
 - D. Give the wave's acceleration equation:
 - E. Find when the wave is at equilibrium (set x = 0).
 - F. Find which direction it is moving at t = 3 sec.
- 25. Use the graph to answer the following.A. Find the graph's amplitude.
 - B. Find the graph's period.
 - C. Find the angular frequency.
 - D. Write the three wave equations for this graph.

