PreAP: Due: Mon., Feb 13 (Assigned: Thurs., Feb 9) Reg: Due: Tues., Feb 14 (Assigned: WFri., Feb 10)

Harmonic Motion 4

1.	(Y or N) Which of the following affects the period of a spring? A Mass at the end of the spring? B Spring constant? C Amplitude?	
2.	When a spring has a bigger spring constant, is it easier or harder to stretch?	
3.	Positive, Negative, or Zero?	
	A.x: when you stretch a spring;D.F: when you compress aB.x: when you compress a spring;E.F: at the equilibrium poC.F: when you stretch a spring;F.x: at the equilibrium pos	spring. sition. sition.
4.	Maximum (Mx) or Minimum (Mn)?	
	AEp at the endpoints.EEk at -AIx at equilibriumBEk at the endpoints.FEp at +AJF at +ACEk at equilibrium.GEk at x = 0.Kx at -ADEp at x = 0.HF at x = 0Lv at x = 0	M v at x N a at x O a at x P a at x
5.	 Using the pendulums and springs at the right, answer the following: ASpring A or B has the biggest amplitude? BPendulum A or B has the smallest amplitude? CPendulum A or C has the quickest period? DSpring A or C has the quickest period? ESpring A or B has the quickest period? FPendulum B or C has the highest frequency? GSpring A or C requires more force to compress it? HSpring B or C has the smallest amplitude? IWhich pendulum has the most energy? JSpring A or C has the most energy? KSpring A or C has the most energy? 	Sprin Sprin Sprin
6.	If $M = 0.5$ kg, find the period of Spring A.	

- 7. If the period of Pendulum C is 1.2 seconds, find its length.
- 8. A spring moves a total distance from side to side of 6 cm. Answer the following.A. How big is its amplitude?B. Where is its equilibrium position?
 - C. How far does it travel in one complete cycle?
- If a spring has a spring constant of 52 N/m, answer the following.
 A. Find the force of the spring if it is stretched 30 cm (notice units).
 - B. Find the force of the spring if it is compressed 15 cm.
 - C. If the spring pulls with +20 N, find the displacement of the spring.
 - D. If the spring pulls with -3 N, find the displacement of the spring.
 - E. How hard will you have to push to give it an amplitude of 12 cm?

Sprin	g A; l M	c = 20	N/m	
Sprin	g B; I 2M	x = 20	N/m	
Spring C; $k = 40 \text{ N/m}$				
46996	М	\sim	м	

= -A= 0= -A= A

- 10. If a spring is hanging, how will its equilibrium position change if you hang a heavier mass on it?
- 11. You hang a 1.5 kg mass on a spring and it stretches 4 cm. Find its spring constant.
- 12. Use Graphs A-C to answer the following:
 - A. _____If they were the same spring, which one has a heavier mass on it?

B. If they were different springs, but equal masses, which one has the higher spring constant?

- C. _____Which one shows a spring with a bigger amplitude?
- 13. What's the medium that the waves travel through?
 - A. Sound in a room:
 - B. Waves in the ocean:
 - C. The slinky in class:
- 14. What happens to a wave with no medium?
- 15. Can we hear sound in space?
- 16. Why or why not?

Use the two Graduated Cylinders at the bottom to answer the following:

- 17. What do we call the curvature of water near glass?
- 18. What do we know about the charges of water and glass?
- 19. What is the volume of the left cylinder?
- 20. Is this cylinder glass or plastic?
- 21. How do you know?
- 22. Find the volume of the snorkeler.
- 23. What do we call this method of finding volume?

