Velocity (m/s)	0	2.25	4.5	6.75	9	11.25	13.5
Distance (m)	0	0.5625	2.25	?	9	14.06	?
Time (sec)	0	0.5	1	1.5	2	2.5	3

1. The above chart shows the motion of an object (*maybe a carnivorous flying weasel*). It has constant acceleration during the first 3 seconds as shown. (*I'm not allowed to divulge what happened next, but it was not pretty, especially for the poor cyber-cow that got in the way.*)

- A. Find the average acceleration for the 3 seconds shown.
- B. Using the acceleration you just found, find the distance it traveled in 3 seconds.
- C. Calculate how far it traveled in 1.5 seconds.
- D. What is its average speed for the first 2 seconds?
- E. If it continues with the same acceleration, how what is its distance after 4.2 seconds (*rather important for the cow*)?
- 2. A plane carries 4 skydivers up to jump altitude of 6,000 m and a jump velocity of 65 m/s. The given mass of the plane includes the flight crew, fuel, and everything other than the 4 jumpers.
 - A. Calculate the kinetic energy of the 4 jumpers when the exit the plane.
 - B. Calculate the potential energy of the plane after the jumpers exit.
 - C. Calculate the total momentum of the plane and jumpers just before they jump.

A Contraction of the second se

	One Skydiver	Plane	Total
Mass	100 kg	$2.4 \text{x} 10^4 \text{ kg}$	2.44x10 ⁴ kg

D. Will the jumpers continue to speed up the entire way down? (Explain.)

	Vi	Vf	Mass
Projectile	0 m/s	$2.4 \text{x} 10^4 \text{ kg}$	0.016 kg
Cart Launcher	0 m/s	?	2.1 kg

- 3. The above cart launcher shoots a projectile. Use the given information to find the following.
 - A. The velocity of the cart launcher after it shoots the projectile.
 - B. The momentum of the cart launcher afterwards.
 - C. (Think impulse.) If friction stops the cart launcher in 1.2 seconds, calculate the force of friction.

Using your book.

- 4. P.186. A person is standing in an elevator on a bathroom scale. For each of the following examples tell me if the scale read normal weight, less weight, more weight, no weight.
 - A. _____ The elevator is accelerating upwards.
 - B. _____ The elevator is moving with constant speed between floors.
 - C. _____ The elevator cables are cut and it falls at the acceleration due to gravity. (AAAAAHHHHHHH!!!!!)

D. _____ The elevator is accelerating downwards.

- E. So when you feel weightless on a rollercoaster or amusement ride it is because which force = zero?
- 5. From P.200
 - A. How far does an object drop in one second (on the earth)?
 - B. How many meters away does it take for the earth curvature to cause a drop of 5 m?
 - C. If an object where 16,000 meters away, how high would it have to be for you to see it?
 - D. How fast does an object have to be traveling in order to orbit the earth in km/sec? (*this IS NOT the escape velocity*)? (*Also, please read the questions and answers at the top and bottom of p.203*)
 - E. How fast is this in meter per second?