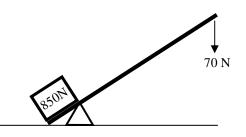
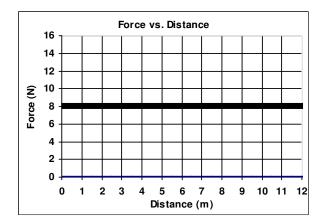

Period:

Work and Energy In Class Review


1. Work	A. Rate of doing work; how fast you	6. Law of Conserva- tion of Energy A. How fast something is done.
2. Power	transfer energy.	tion of EnergyB. An object that moves forever without added energy.7. Rate
3. Kinetic Energy	B. Energy of position or height.	C. A change in kinetic energy comes
	C. Applied energy; can create energy.	8. Work-Kinetic Energy Theorem D. Energy can be transformed, but not
4. Potential Energy	D. Energy of something that can be compressed.	9. Energy created nor destroyed.
5. Potential Elastic Energy	E. Energy due to motion and inertia.	10.Perpetual motionE. Stored work; ability to create forces or cause motion.
11. Chemical	A. Energy stored in the atom.	18. A person pulls down with 50 N to lift an object up 1 m.
12. Nuclear	B. Energy stored in molecular bonds.	A) What is the MA of the pulley system?
13. Mechanical	C. Caused by friction. Heat.	B) How much rope will you pull out?
14. Thermal	D. Due to moving electrons.	C) What is W _{in} ?
15. Electrical	E. From light.	C) what is w _{in} :
16. Radiant	F. Any kinetic or potential energy.	D) What is W_{out} ?
17. Which of the fol shows positions highest to lowes kinetic energy?	from	E) Calculate efficiency. 50 N 120 N 1 m
i. E, G, F ii. E, F, A iii. A, F, D		F) If the pulley was 100% efficient, how much force would you have needed?
19. A more powerfu	l motor does more work. True or false?	23. A. Which of the 3 forces does no work on the object? 6N 2 m 2 m
20. In the same amount of time a more powerful motor:		B. Find the <i>total</i> work done on the 6 kg mass. $5 \text{ N} \rightarrow 6 \text{ kg} \rightarrow 6 \text{ kg}$
	gy does a 60 W light bulb use in <i>sure to use seconds</i> .)	
		C. If there is no friction, how much energy does it gain?
22. A 70 kg person climbs up 2 meters in 2.8 seconds.A) How much E_p did they gain?		24. You hold onto a book for an hour.A. Does your body get tired?B. Does your body use energy?
B) How much po	ower did they use?	C. Do you do any work on the object? D. Why?
25. How do all simp	le machines multiply force?	<u>I</u>
26. With a simple machine (like the ramp below), do you do more or less work if there is no friction?		
27. With a simple machine, do you do more or less work if there is friction?		
28. With a simple m	3. With a simple machine, do you use less or more force?	
29. With a simple m	9. With a simple machine, do you use less or more time? 2 m 10 m 50 N	
20 With a simula m	achina do vou use lass or more power?	2 m 10 m 130 N

30. With a simple machine, do you use less or more power?

31. Can a simple machine ever have an efficiency greater than 100%? Why or why not?


- 32. A frictionless ramp is inclined at 20°. An object going 6 m/s slides up.A) Find the final height of the object.
 - B) *How far up the ramp does it roll?*
- 33. A person pushes down on a lever 3.2 meters to lift a 850 N object0.25 meters up. The person pushes down on the lever with 70 N of force.Find the efficiency of the lever.

- 34. A 1.2 kg rock is dropped from 20 meters. The rock is going only 15 m/s just before it hits the ground because of air friction.
 - A) How far does friction act on the rock?
 - B) How far does the rock drop?
 - C) Does all of the Ep turn into Ek?
 - D) Does friction add or subtract energy?
 - E) Find the force of air friction on the rock.
- 35. A 6 kg object going 2 m/s speeds up to 7 m/s due to a 4 N force.A) How many meters does the force act?

B) What is the acceleration of the object?

- 36. A 4 kg mass going 6 m/s stops by compressing a spring 1.3 meters. Find the spring constant of the spring. (VEO) (VEO—variables and equation only. Give equations, put in numbers, and do not solve.)
- 37. A 5 kg object is dropped from 30 meters up. How fast is it going 10 meters above the ground? (VEO)
- 38. A 3 kg object is originally at rest is pushed on by the force shown on the graph at the right.
 - A) Find the work done on the object in the first 10 m.
 - B) Find the final velocity of the object.

Copyright © 2008, C. Stephen Murray