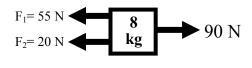

Friction 3


- 1. Can an object be at equilibrium if only one force is acting upon it? Why or why not?
- 2. If a car is going downhill and feels 2500 N of force due to gravity, how much force must the brakes give to keep the car from accelerating down the hill?
- 4. Give the three conditions of equilibrium:
- 5. A 15 kg object sits on a 20 kg object. What is the normal force between the two objects?

- 13. Find the weight of the 6 kg object.
- 14. How much force is necessary to move it?
- $F_k = 20 \text{ N}$ 15. Will the 6 kg object move?
 - 16. If it moves how much force will oppose it?
 - 17. If it moves, find its acceleration.

21. Find the equilibrium force for this object:

- 22. A 12 kg object is on a surface with μ s = 0.35 and μ k = 0.15. Find Fs and Fk.
- 23. If a 50 N force pulls to the right on the above object, will it move? If no, how much more force is necessary. If yes, find the acceleration.
- 23. Two forces are pulling on a 10 kg object: a 15 N force pulls at 60° N of E; a 35 N force pulls due west.

A. Find the net force on the object (magnitude and direction again).

- B. Find the acceleration of the object.
- C. What force would be necessary to keep it at equilibrium?
- 24. (On the back)

Help on Website: Chemistry Study Helps/ Solutions, Acids and Bases

24. (Words can be used more than once	e.) Salt water is called a s	because the salt is
ed in the water. Salt water	is not a chemical it is a	at the molecular level.
The salt portion is smaller so we call it	the, while the	water portion we call the
To allow the salt	to faster we coul	d or
the water. W	hen the salt water s	_ can hold more salt we say it is
When it has as much	salt as it can hold we call it _	If we cool the
s we could make it overfu	ll, called	, and eventually the salt will fall
out to the bottom. (BONUS ITALICS:)	This solidification is called a	We
could recover the salt by	the water because a mixt	ture is a change, not
chemical.		