A-Day: Due Wed., Sept 5 (Assigned: 8/31) B-Day: Due Thurs., Sept 6 (Assigned: 9/4)

Linear Motion 3

Safety Contracts are now overdue—get them in!!!!

1) A) Given
$$MA = \frac{F_{out}}{F_{in}}$$
 solve for "F_{in}"

B) Given $v_f = v_i + at$ solve for "a".

$\Delta = final - initial$					
$\Delta x = x_f - x_i$					
$v = \frac{\Delta x}{t}$ $S = \frac{D}{T}$					
$a = \frac{\Delta v}{t} = \frac{v_f - v_i}{t}$					
$y = mx + b \qquad m = \frac{\Delta y}{\Delta x}$					

Write the information on the right on your equation sheet.
 Write the following on your variable list.

Δ	(no units)	Delta	Change of (always final – initial)
х	m	position	Where you are from a certain place
Δx	m	Displacement	Dist. from original position (can be 0)
D (or d)	m	Distance	How far you travel (total)
t	Sec	Time	Elapsed time
v	m/s	velocity	How fast you are moving with dir.
a	m/s ²	acceleration	How fast you change velocity
Δy	m	Vertical Displ.	Change of verti. distance

- 4) Speed or velocity: A) A car is driving 80 mph. B) A person walking north.
- 5) What is the difference between a scalar quantity and a vector quantity?
- 6) What are the two ways you know an object is accelerating.
- 7) How can an object not change speed, but be accelerating?
- 8) Velocity is positive or negative: A) if moving to the left: ____; B) if moving to the right: ____.

Looking on the equation sheet above: remember that " Δ (delta)" ALWAYS means "final – initial", so $\Delta v = v_f - v_i$.9) An object is moving 30 m/s to the left. After 5 seconds it is moving 10 m/s to the left. Find the acceleration of the object.

<

10) An object is moving 45 m/s *to the right*. After 7 seconds it is moving right at 10 m/s. Find acceleration. <u>Variables</u>: <u>Equation</u>: <u>Solve</u>:

More questions on back

cstephenmurray.com

So, using the your answers from the previous 2 questions:

- 11) An object is moving to the left and speeding up.
 - A) Is velocity positive or negative?
 - B) Is acceleration positive or negative?
- 12) An object is moving to the right and slowing down.
 - A) Is velocity positive or negative?
 - B) Is acceleration positive or negative?
- 13) An object is moving to the right and speeding up.
 - A) Is velocity positive or negative?
 - B) Is acceleration positive or negative?
- 14) A car is going 8 m/s.
 - A) How far is it traveling each second?
 - B) How far will it travel in 3 seconds?
 - C) How far will it travel between second 12 and 13?
- 15) Use the tape timers at the right to answer the following.
 - A. Which represents constant speed?
 - B. Which is faster: a or c?
 - C. If each dot represents 1 second how long does it take "C" to go 15 m?
 - D. Find the speed of object C. (Use the steps.)

17) A) _____ cm = 1 m. B) $18 \text{ cents} = _____ \text{dollars.}$

D) So, 25 cm = m E) 5.6 cm = m

16) Use the figure at the right to figure out how fast the car is going.

From the previous bellwork:

C) $6 \text{ cents} = ___ \text{ dollars}$

- 18) Which organisms are more closely related: two that have the same class or two that have the same genus?
- 19) Which are we more alike: a clam or a tree? Why?
- 20) Which of these four organisms are most alike? (Can you guess what they are?)
 - A. Ursus maritimus B. Ailuropoda melanoleuca
 - C. Ursus arctos D. Melursus ursinus