Name: \qquad
Period: \qquad

Additional Adding Vector Examples

Ex. 1—Add these vectors: $\mathbf{3 5} \mathrm{m}$ at 30° and $\mathbf{6 0} \mathrm{m}$ at 160°.

These additional examples are for students to visualize the process of adding vectors. It is assumed that students can already calculate components.

Step 1. Resolve vectors into their components.

Step 3. Calculate R's magnitude and direction.
$\mathrm{R}^{2}=26.1^{2}+38^{2}$ $R=46.1 \mathrm{~m}$

$\tan \theta=\frac{o p p .}{\text { adj. }}=\frac{y_{\text {total }}}{\mathrm{x}_{\text {total }}}$ $\tan \theta=\frac{38}{-26.1}$ $\theta=\tan ^{-1}\left(\frac{38}{-26.1}\right)=-56.6^{\circ}$ $-56.6+180$-124.4

Add 180° to your angle because it is obviously not in the 4th quadrant.

Ex. 2—Add these vectors: $1250 \mathrm{~m} / \mathrm{s}$ at 90° and 2600 m at 320°.
Step 1. Resolve vectors into their components.
Step 2. Calculate $x_{\text {total }}$ and $y_{\text {total }}$

Step 3. Calculate R's magnitude and direction.
$\mathrm{R}^{2}=\mathrm{x}_{\text {toata }}{ }^{2}+\mathrm{y}_{\text {toat }}{ }^{2}$
$R^{2}=1992^{2}+421^{2}$
$R=2036 \mathrm{~m}$
$\tan \theta=\frac{\text { opp. }}{\text { adj. }}=\frac{\mathrm{y}_{\text {total }}}{\mathrm{x}_{\text {total }}}$
$\tan \theta=\frac{-421}{1992}$
$\theta=\tan ^{-1}\left(\frac{-421}{1992}\right)=-12^{\circ}$

