PAP Physics Spring Exam Review

Multiple Choice

Identify the letter of the choice that best completes the statement or answers the question.

- 1. A container of gas is at a pressure of 1.3×10^5 Pa and a volume of 6.0 m³. How much work is done by the gas if it expands at constant pressure to twice its initial volume?
 - a. 3.7×10^5 J b. 2.6×10^5 J c. 7.8×10^5 J d. 4.6×10^5 J
 - 2. How is conservation of internal energy expressed for an adiabatic system?
 - a. Q = W = 0, so $\Delta U = 0$ and $U_i = U_f$
 - b. Q = 0, so $\Delta U = -W$
 - c. $\Delta T = 0$, so $\Delta U = 0$; therefore, $\Delta U = Q W = 0$, or Q = W
 - d. $\Delta V = 0$, so $P\Delta V = 0$ and W = 0; therefore, $\Delta U = Q$
- 3. How is conservation of internal energy expressed for an isovolumetric system?
 - a. Q = W = 0, so $\Delta U = 0$ and $U_i = U_f$
 - b. Q = 0, so $\Delta U = -W$
 - c. $\Delta T = 0$, so $\Delta U = 0$; therefore, $\Delta U = Q W = 0$, or Q = W
 - d. $\Delta V = 0$, so $P\Delta V = 0$ and W = 0; therefore, $\Delta U = Q$
 - 4. How is conservation of internal energy expressed for an isothermal system?
 - a. Q = W = 0, so $\Delta U = 0$ and $U_i = U_f$
 - b. Q = 0, so $\Delta U = -W$

a.

- c. $\Delta T = 0$, so $\Delta U = 0$; therefore, $\Delta U = Q W = 0$, or Q = W
- d. $\Delta V = 0$, so $P\Delta V = 0$ and W = 0; therefore, $\Delta U = Q$

5. A total of 165 J of work is done on a gaseous refrigerant as it undergoes compression. If the internal energy of the gas increases by 123 J during the process, what is the total amount of energy transferred as heat?
 a. -42 J
 c. -288 J

- b. 42 J d. 288 J
- 6. A mass attached to a spring vibrates back and forth. At the equilibrium position, the
 - a. the acceleration reaches a maximum. c. net force reaches a maximum.
 - b. velocity reaches a maximum. d. velocity reaches zero.
- _ 7. A mass attached to a spring vibrates back and forth. At maximum displacement, the spring force and the
 - a. velocity reach a maximum. c. acceleration reach a maximum.
 - b. velocity reach zero. d. acceleration reach zero.
- 8. A simple pendulum swings in simple harmonic motion. At maximum displacement,
 - the acceleration reaches a maximum. c. the acceleration reaches zero.
 - b. the velocity reaches a maximum. d. the restoring forces reach zero.

9. A mass on a spring that has been compressed 0.1 m has a restoring force of 20 N. What is the spring constant?

- a. 10 N/m c. 200 N/m
- b. 20 N/m d. 300 N/m

10. An amusement park ride has a frequency of 0.05 Hz. What is the ride's period?

- a. 5 s
 c. 20 s

 b. 10 s
 d. 40 s

1

11. A car with bad shock absorbers bounces up and down with a period of 1.5 s after hitting a bump. The car has a mass of 1500 kg and is supported by four springs with a spring constant of 6600 N/m. What is the period for each spring?

	a.	1.5 s			с.	4.4 s
	b.	5.8 s			d.	3.6 s
 12.	Wł	nat is the p	period of a 4	.12 m long pe	ndulum?	
	a.	2.01 s			с.	4.07 s
	b.	3.11 s			d.	9.69 s

13. A radio wave has a speed of 3.00×10^8 m/s and a frequency of 107 MHz. What is the wavelength?

	3.21 m 45.0 m	0.100 m 2.79 m
†1		

- 14. Which of the following types of interference will occur in the figure above?
 - a. partial constructive
- c. complete constructive

b. partial destructive

d. complete destructive

- 15. How many nodes and antinodes are shown in the standing wave above?
 - a. four nodes and four antinodes
- c. four nodes and five antinodes
- b. four nodes and three antinodes
- d. five nodes and four antinodes

_____ 16. Sound waves

11

- a. are a part of the electromagnetic spectrum.
- b. do not require a medium for transmission.
- c. are longitudinal waves.
- d. are transverse waves.
- 17. What is the lowest frequency that will resonate in a 2.0 m length organ pipe closed at one end? The speed of sound in air at this temperature is 340 m/s.
 - a.42 Hzc.170 Hzb.85 Hzd.680 Hz

18. Two notes have a beat frequency of 8 Hz. The frequency of one note is 612 Hz. What is the frequency of the other note?

a. 325 Hz or 318 Hz

c. 604 Hz or 620 Hz

b. 5 Hz

d. 680 Hz

19	305 Hz. What frequency is detected by a statio		
	a. 340 Hz b. 360 Hz	c. 280 Hz d. 260 Hz	
20	0. What is the frequency of infrared light of $1.0 \times$ a. 3.0×10^{-2} Hz		
	b. 3.0×10^4 Hz	d. 3.0×10^2 Hz	
2		ectromagnetic radiation, you can determine its frequency	
	 because a. all wavelengths travel at the same speed. b. the speed of light varies for each form. c. wavelength and frequency are equal. d. the speed of light increases as wavelength 	n increases.	
22		as far away from the light source, how does the brightness at	
	the new distance compare with that at the old d		
	a. one-eighth b. one-fourth	c. one-half d. twice	
2			
	a. 13° from the mirror's surface.	c. 90° from the mirror's surface.	
	b. 27° from the normal.	d. 14° from the normal.	
24	corresponding object is at a 29 cm distance, wh	÷	
	a. 14 cm b. 9.4 cm	c. 12 cm d. 36 cm	
2:	 5. If a virtual image is formed 10.0 cm along the principal axis from a convex mirror with a focal length of -15.0 cm, what is the object's distance from the mirror? 		
	a. 30.0 cm	c. 6.0 cm	
	b. 12 cm	d. 3.0 cm	
20	 When red light and green light shine on the san a. yellow. 	me place on a piece of white paper, the spot appears to be c. white.	
	b. brown.	d. black.	
2′	7. When a light ray moves from air into glass at a	an angle of 45°, its path is	
	a. bent toward the normal.	c. parallel to the normal.	
2	b. bent away from the normal.	d. not bent.	
28	. Carbon tetrachloride ($n = 1.46$) is poured into a container made of crown glass ($n = 1.52$). If a light ray in the glass is incident on the glass-to-liquid boundary and makes an angle of 30.0° with the normal, what is the angle of the corresponding refracted ray with respect to the normal?		
	a. 55.5°	c. 31.4°	
_	b. 28.7°	d. 19.2°	
29	 An object is placed 6.0 cm from a thin converg of 9.0 cm. What is the distance from the image 	ging lens along the axis of the lens. The lens has a focal length	
	a. 3.0 cm	c. 18 cm	
	b3.0 cm	d. –18 cm	

 30.	An object is placed 14.0 cm from a diverging	lens.	If a virtual image appears 10.0 cm from the lens on the		
	same side as the object, what is the focal leng				
	a50.0 cm		-10.0 cm		
	b35 cm	d.	-8.0 cm		
 31.			se on a screen. If the projector lens is 4.00 m from the		
	screen and the size of the horse on the film is	1.07			
	a. 141	c.	7.08×10^{-3}		
	b14.1	d.	-7.08×10^{-3}		
 32.	Which of the following describes what will happen to a light ray incident on a glass-to-air boundary at greater than the critical angle?				
	a. total reflection	c.	partial reflection, partial transmission		
	b. total transmission	d.	partial reflection, total transmission		
 33.	The process of charging a conductor by bring conductor is called	ing it	near another charged object and then grounding the		
	a. charging by contact.	c.	charging by polarization		
	b. induction.	d.	neutralization.		
 34.	Two point charges, initially 2 cm apart, are m	loved	to a distance of 10 cm apart. By what factor do the		
	resulting electric and gravitational forces betw				
	a. 5	c.	$\frac{1}{2}$		
	u. <i>5</i>		5		
	b. 25	d.	$\frac{1}{25}$		
 35.	Two point charges have a value of 30 μ C eac	h and	are 4 cm apart. What is the electric field at the midpoint		
	between the two charges? ($k_c = 8.99 \times 10^9$ N•				
	a. 4.5×10^7 N/C		$.5 \times 10^{7} \text{N/C}$		
	b. 2.3×10^7 N/C	d.	0 N/C		
36.	If a conductor is in electrostatic equilibrium,	any e	xcess charge		
	a. flows to the ground.	5	č		
	b. resides entirely on the conductor's outer	surfa	ce.		
	c. resides entirely on the conductor's interio	or.			
	d. resides entirely in the center of the condu	ictor.			
 37.	A uniform electric field with a magnitude of a	$5.0 \times$	10^2 N/C is directed parallel to the positive <i>x</i> -axis toward		
	the origin. What is the change in electrical energy of a proton ($q = 1.60 \times 10^{-19}$ C) as it moves from $x = 5$ m to				
	x = 2 m?				
	a. $8.0 \times 10^{-17} \text{ J}$	c.	$2.0 imes 10^{21} \mathrm{J}$		
	b. $2.4 \times 10^{-16} \text{ J}$	d.	500 J		
 38.	Two protons, each having a charge of $1.60 \times$ energy between the two charges?	10-19	C, are 2.0×10^{-5} m apart. What is the electrical potential		
	a. 1.1×10^{-23} J	c.	$3.2 \times 10^{-16} \text{ J}$		
	b. $3.2 \times 10^{-19} \text{ J}$	d.	$1.6 imes 10^{-14} \text{ J}$		
 39.	A capacitor consists of two metal plates;	_ is st	ored on one plate and is stored on the other.		
	a. negative charge; positive charge		potential difference; internal resistance		
	b. potential energy: kinetic energy		residual charge: induced charge		

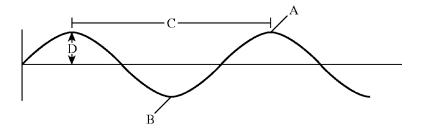
- b. potential energy; kinetic energy d. residual charge; induced charge

40.	A 0.50 μ F capacitor is connected to a 12 V bat capacitor?	ttery.	. How much electrical potential energy is stored in the				
	-	0	0.04 I				
	a. $2.0 \times 10^{-12} \text{ J}$ b. $1.0 \times 10^{-12} \text{ J}$	с.	0.04 J 3.6 × 10 ⁻⁵ J				
41.	The amount of charge that moves through the in the light bulb?	The amount of charge that moves through the filament of a light bulb in 2.00 s is 2.67 C. What is the current in the light bulb?					
	a. 5.34 A	c.	0.835 A				
	b. 1.33 A	d.	0.417 A				
42.	A flashlight bulb with a potential difference of in the bulb filament?	f 4.5	V across it has a resistance of 8.0 Ω . How much current is				
	a. 3.7 A	c.	9.4 A				
	b. 1.8 A	d.	0.56 A				
43.	Tripling the current in a circuit with constant r	resist	ance has the effect of changing the power by what factor?				
	a. $\frac{1}{3}$	c.	3				
	b. $\frac{1}{9}$	d.	9				
44.	If a 5.00×10^2 W heater has a current of 4.00 Å	A, w	hat is the potential difference across the ends of the				
	heating element?						
	a. $2.00 \times 10^3 \text{ V}$	c.	$2.50 \times 10^2 \text{ V}$				
	b. 125 V	d.	$8.00 \times 10^{-3} \text{ V}$				
45.	If the potential difference across a pair of batted difference across the flashlight bulb?	eries	used to power a flashlight is 6.0 V, what is the potential				
	a. 3.0 V	c.	9.0 V				
	b. 6.0 V	d.	12 V				
46.	Three resistors with values of 3.0Ω , 6.0Ω , an resistance of this combination?	ld 12	Ω are connected in series. What is the equivalent				
	a. 0.58 Ω	c.	7.0 Ω				
	b. 1.7 Ω	d.	21 Ω				
47.	—	-	labeled ΔV_1 , ΔV_2 , and ΔV_3 . Which of the following				
	expresses the total voltage across the three rest						
	a. $\Delta V_t = \Delta V_1 + \Delta V_2 + \Delta V_3$		$\Delta V_t = \Delta V_1 = \Delta V_2 = \Delta V_3$				
	b. $\Delta V_t = (1/\Delta V_1 + 1/\Delta V_2 + 1/\Delta V_3)$	d.	$\Delta V_{t} = (1/\Delta V_{1} + 1/\Delta V_{2} + 1/\Delta V_{3})^{-1}$				
	$6.0 \ \Omega$ 10.0 Ω						
	2.0 Ω						
	$4.0 \ \Omega$						
48.	What is the equivalent resistance for the resist	ors i	n the figure above?				

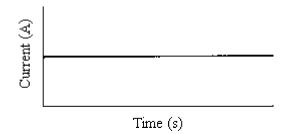
 $\underbrace{ 48. \text{ What is the equivalent resistance for the resistors in the figure above?}_{\text{a.}} \underbrace{ 2.3 \Omega}_{\text{c.}} \underbrace{ 13 \Omega}_{\text{c$

a.	2.5 12	С.	13 22
b.	5.2 Ω	d.	22Ω

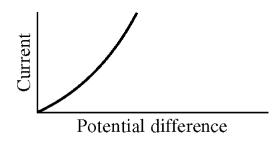
49. What is the path of an electron moving parallel to a uniform magnetic field?

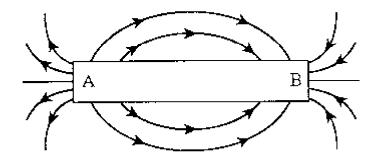

c.	ellipse
d.	parabola

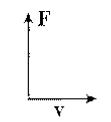
straight line circle b.


a.

- 50. The bright lines in the absorption spectrum of an element can be accounted for by the
 - absorption of photons that occurs when electrons jump from a higher-energy state to a a. lower-energy state.
 - emission of photons that occurs when electrons jump from a higher-energy state to a b. lower-energy state.
 - c. absorption of photons that occurs when electrons jump from a lower-energy state to a higher-energy state.
 - emission of photons that occurs when electrons jump from a lower-energy state to a d. higher-energy state.
- 51. The dark lines in the absorption spectrum of an element can be accounted for by the
 - absorption of photons that occurs when electrons jump from a higher-energy state to a a. lower-energy state.
 - b. emission of photons that occurs when electrons jump from a higher-energy state to a lower-energy state.
 - c. absorption of photons that occurs when electrons jump from a lower-energy state to a higher-energy state.
 - emission of photons that occurs when electrons jump from a lower-energy state to a d. higher-energy state.


Short Answer


- 52. In the waveform shown above, which letter represents the amplitude of the wave?
- 53. In the waveform shown above, which letter represents the trough of the wave?
- 54. In the waveform shown above, what does letter C represent?
- 55. What happens to the energy of a wave when the amplitude is increased?
- 56. What determines the pitch of a musical note?
- 57. Which carries a sound wave more rapidly, a solid or a gas? Explain.


58. What type of electric current is shown in the figure above?

59. What type of material does the current-potential difference curve illustrate in the graph above?

- 60. The magnetic field of a bar magnet is shown in the figure above. Is the magnet's north pole at A or B?
- 61. Which magnetic pole is at the geographic North Pole of Earth?

62.

A negative charge is moving through a magnetic field. The direction of motion and the direction of the force acting on it at one moment are shown in the figure. Find the direction of the magnetic field.

Problem

63. What is the electric force between a proton and an alpha particle (charge 2*e*) that are separated by a distance of 3.0×10^{-6} m? ($e = 1.60 \times 10^{-19}$ C, $k_c = 8.99 \times 10^9$ N•m²/C²)

PAP Physics Spring Exam Review Answer Section

MULTIPLE CHOICE

- 1. ANS: C
- 2. ANS: B
- 3. ANS: D
- 4. ANS: C
- 5. ANS: A
- 6. ANS: B
- 7. ANS: C
- 8. ANS: A
- 9. ANS: C
- 10. ANS: C 11. ANS: A
- 12. ANS: C
- 13. ANS: D
- 14. ANS: D
- 15. ANS: D
- 16. ANS: C
- 17. ANS: A
- 18. ANS: C
- 19. ANS: D
- 20. ANS: C
- 21. ANS: A
- 22. ANS: B
- 23. ANS: D
- 24. ANS: B
- 25. ANS: A
- 26. ANS: A
- 27. ANS: A
- 28. ANS: C
- 29. ANS: D
- 30. ANS: B
- 31. ANS: A
- 32. ANS: A
- 33. ANS: B
- 34. ANS: D
- 35. ANS: D
- 36. ANS: B
- 37. ANS: B
- 38. ANS: A
- 39. ANS: A

- 40. ANS: D
 41. ANS: B
 42. ANS: D
 43. ANS: D
 44. ANS: B
 45. ANS: B
 46. ANS: D
 47. ANS: C
 48. ANS: B
 49. ANS: A
 50. ANS: B
- 51. ANS: C

SHORT ANSWER

- 52. ANS:
 - D
- 53. ANS: B
- 54. ANS: wavelength
- 55. ANS: The energy increases.

56. ANS:

- frequency
- 57. ANS:

A solid carries a sound wave more rapidly because its molecules are closer together than those of a gas.

- 58. ANS:
 - Direct current
- 59. ANS:

nonohmic material

60. ANS:

Α

61. ANS:

The magnetic south pole is located at the geographic North Pole of Earth.

62. ANS:

out of the page

PROBLEM

63. ANS: 5.1 × 10⁻¹⁷ N