PreAP Due 9/10

Put the first two boxes worth of equations on your equation sheet. It should all be in the first column.

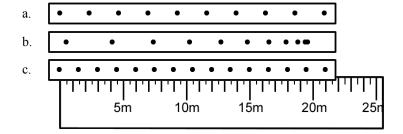
$\Delta = final - initial$					
$\Delta x = x_f - x_i$					
$v = \frac{\Delta x}{t} \qquad S = \frac{D}{T}$					
$a = \frac{\Delta v}{t} = \frac{v_f - v_i}{t}$					
$y = mx + b \qquad m = \frac{\Delta y}{\Delta x}$					

$r = \frac{1}{2}(v_i + v_f)t$
$v_f = v_i + at$
$x = v_i t + \frac{1}{2} a t^2$
$v^2 = v_i^2 + 2a\Delta x$
$c = v_f t - \frac{1}{2}at^2$

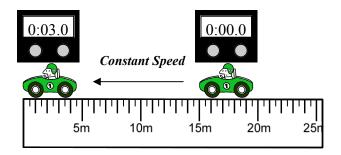
Put the following on your variable sheet.

Δ	(no units)	Delta	Change of (always final – initial)
X	m	position	Where you are from a certain place
Δx	m	Displacement	Dist. from original position (can be 0)
D (or d)	m	Distance	How far you travel (total)
t	Sec	Time	Elapsed time
V	m/s	velocity	How fast you are moving with dir.
a	m/s ²	acceleration	How fast you change velocity
Δy	m	Vertical Displ.	Change of vertical distance

- 1) Speed or velocity: A) A car is driving 80 mph.
- B) A person walking 4 m/s north.
- 2) What is the difference between a scalar quantity and a vector quantity?
- 3) What are the two ways you know an object is accelerating.
- 4) How can an object not change speed, but be accelerating?
- 5) Velocity is positive or negative: A) if moving to the left: _____; B) if moving to the right: _____.


Looking on the equation sheet above: remember that " Δ (delta)" ALWAYS means "final – initial", so $\Delta v = v_f - v_i$.

- 6) An object is moving 30 m/s <u>to the left</u>. After 5 seconds it is moving 10 m/s to the left. Find the acceleration of the object. <u>Variables</u>: <u>Equation</u>: <u>Solve</u>:
- 7) An object is moving 45 m/s <u>to the right</u>. After 7 seconds it is moving right at 10 m/s. Find acceleration. <u>Variables:</u> <u>Equation:</u> <u>Solve:</u>


More questions on back

So, using the your answers from the previous 2 questions:

- 8) An object is moving to the left and speeding up.
 - A) Is velocity positive or negative?
 - B) Is acceleration positive or negative?
- 9) An object is moving to the right and slowing down.
 - A) Is velocity positive or negative?
 - B) Is acceleration positive or negative?
- 10) An object is moving to the right and speeding up.
 - A) Is velocity positive or negative?
 - B) Is acceleration positive or negative?
- 11) A car is going 8 m/s.
 - A) How far is it traveling each second?
 - B) How far will it travel in 3 seconds?
 - C) How far will it travel between second 12 and 13?
- 12) Use the tape timers at the right to answer the following.
 - A. Which represents constant speed?
 - B. Which is faster: a or c?
 - C. If each dot represents 1 second how long does it take "C" to go 15 m?
 (Remember that dot 1 is really time 0.)
 - D. Find the speed of object C.

13) Use the figure at the right to figure out how fast the car is going.

