2009 PreAP Light and Optics 5

- 1. If the radius of curvature of a CONCAVE lens is 10 cm? What is the focal length?
- A 4 cm object is 6 cm in front of a *concave* lens with a radius of curvature of 10 cm.
 A. Is the focal length for this lens positive or negative?
 B. In the equation, will f be + or -?
 C. If C = 2f, f =
 - D. Find the distance to the image. E. Find the height of the image.

F. Find the magnification.

- D. Is it a real or virtual image?
- A beam of light of wavelength 560 nm hits an equilateral *glass* prism straight on (at 0° to the normal). Figure out the path of the light in the prism, including with angles. Use a protractor, if necessary.
 (Because it is equilateral, the geometry is pretty easy.)

4. Draw the following ray diagrams. Describe the image, optically.

- 5. For the above diagram:
 - A. Calculate the focal length.
 - B. Calculate the magnification.
 - C. Calculate the height of the image.

- 6. For the above diagram:
 - A. Calculate the focal length.
 - B. Calculate the magnification.
 - C. Calculate the height of the image.
- 7. [p556] A. Back in Sound, we used intensity to measure what quantity of sound: period, frequency, or amplitude? B. The intensity of sound decreases or increases as you move away from the sound source?
 - C. From the equation for intensity of sound, how much does the sound change if you are twice as far away from the source?
 - C. So, relating both sound and light (back in chapter 14), intensity of both are known as i______s ____ laws. (How they change with distance [p556].)
 - E. So, the brightness of light relates to its: amplitude; period; frequency; color; wavelength?
- 8. A. What is total internal reflection?
 - B. When does this occur (relate it to another topic we have discussed)?
 - C. How do we use it in our world?

Read about polarization. (p. 546).

 Two polarizers are placed over a happy face. In which situation is one of the polarizers turned 90°?

Get ready to spend a little time with our Internet Lens Applet (in Light Links marked VERY IMPORTANT). Get a cup of hot chocolate, your house shoes, a warm blanket.... (The diagram at the right will help you with navigation).

The regions you will use are: outside C; at C; between C and f; at f; inside f. Other descriptions you already know: virtual, real, magnified, reduced, on real side, etc.

10. Starting with the default convex lens, fill in the table below.

Device	convergent/ divergent	For the object	For the image:		
		location	location	Real/ virtual	magnified/ reduced
Convex Lens		At C			
		outside C			
		between C and f			
		at f			
		inside f			
Concave Lens		At C			
		outside C			
		between C and f			
		at f			
		inside f			
Concave Mirror		At C			
		outside C			
		between C and f			
		at f			
		inside f			
Convex Mirror		At C			
		outside C			
		between C and f			
		at f			
		inside f			

- 11. A. Which kind of optical devices can create virtual images?
 - B. Which kind of optical devices can magnify?
 - C. Which kind of optical devices can reduce?
 - D. Which kind of optical devices can create real images?
 - E. Since both convex and concave lenses can produce virtual images, how could you tell the difference just by knowing the distances to the object and image?
 - F. Where would you put the object to make the light rays come off the device parallel?
 - G. A student works the following problem: "A convex lens with a 4 cm focal length produces an image 10 cm from the right side of the lens. Find the distance of the object." The student works the problem and gets an answer of p = 9 cm. WITHOUT WORKING THE PROBLEM, how can you tell that they did it wrong?