$Due\ 1/28 \\ --- Be \ sure \ to \ rework \ the \ study \ helps \ until \ it \ is \ easy!!! \ Also, \ read \ the \ book \ on \ Efficiency \ and \ Cyclical \ processes.$

TT	_					
Н	0	m	e١	N(Dr	ĸ

Note: Isobaric = same pressure (we only do isobaric processes)	isobaric processes).	y do iso	ıly do	(we onl	pressure	= same	Isobaric =	Note:
--	----------------------	----------	--------	---------	----------	--------	------------	-------

5) Book p.431 Questions 2 thru 21. Omit Q 6, 7, 12, and 15

1)	Isothermal (T); Isovolumetric (V); Adiabatic (A)? A A tire being rapidly inflated. B A tire expanding gradually as it is heated. C A tire being heated with it is in a rigid metal container. D In a refrigerator when the compressor compresses the refrigerant quickly. E In a refrigerator when the refrigerant (which is in a metal tube) absorbs heat from the inside of the refrigerator. F In a refrigerator when the refrigerant expands quickly.
2)	Positive, Negative, or Zero? A \(\Delta \text{U} \) during an isovolumetric process if heat is removed. B \(\Q \) in an isovolumetric process if \(\Delta \text{U} \) is negative. C \(\Delta \text{U} \) during an isothermal process. D \(\Q \) in an adiabatic process if the gas expands. E \(\Delta \text{U} \) if \(\Q = \W \). F \(\Delta \text{U} \) when positive work is done on the gas \((Q = 0) \). G \(\Delta \text{U} \) when negative work is done by the gas \((Q = 0) \). H \(\Delta \text{U} \) during an adiabatic expansion. I \(\W \) ork done by the gas when \(Q = 0 \), but temperature decreases. J \(\W \) ork done by the gas when the volume of the gas increases. K \(\Q \) in an isothermal process if the gas compresses. L \(\Delta \text{U} \) if \(Q = 0 \) and the gas is compressed. M \(\W \) ork done by the gas during an isovolumetric process.
3)	An engine gains $2.56 \times 10^7 \text{J}$ of energy from combustion. If the engine expels $1.15 \times 10^7 \text{J}$, how efficient is the engine?
4)	If a refrigerator is left open in the middle of a room, does the room's overall temperature increase or decrease over time? (Support your answer, of course.)