Electricity 7

Equation	
In Series	$\mathbf{R}_{\mathrm{T}} = \mathbf{R}_1 + \mathbf{R}_2 \dots$
In Parallel	$\frac{1}{R_{\rm T}} = \frac{1}{R_{\rm 1}} + \frac{1}{R_{\rm 2}} + \dots$

Example: 3 resistors are in parallel: 4Ω , 5Ω , and 7Ω . Find the total resistance of three resistors.

Solution: Since in parallel use:

$$\frac{1}{R_{T}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \dots \qquad \frac{1}{R_{T}} = \frac{1}{4} + \frac{1}{5} + \frac{1}{7} \qquad \frac{1}{R_{T}} = .593$$
$$\frac{1}{R_{T}} = .25 + .2 + .143 \qquad R_{T} = \frac{1}{.593} = 1.7\Omega$$

- 1. Series or Parallel?
 - A) ____ If one bulb is unscrewed, they both go off.
 - B) ____ Both devices have the same current.
 - C) ____ If one light bulb is unscrewed, the other stays on.
- E) ____ Has more than one path.
- F) ____ Has only one path for the electricity.
- G) ____ Has a place where the current splits and joins again.
- D) ____ Both devices have the same voltage across them.
- 2. Using your equations and rules for series and parallel circuits to find the total voltage or resistance of the following.

- 5. Use the same words to tell someone how to make a parallel circuit.
- What do we call a place where electricity splits in a circuit? 6.

7. Use the circuit at the left to answer the following. A) What happens when the switch is closed?

B) How does the brightness of bulb 1 compare before and after the switch is closed?

- What happens if you put a wire across the terminals of a battery (between the positive 8. and negative ends of a battery?
- 9. How can this be dangerous?

4.

- 10. Use the diagram to answer:
 - A) Total voltage:
 - B) Parallel or series?
 - C) Which light bulb will have more current flowing thru it?
 - D) What is the V from F to D (V_{FD}) ?
 - E) $V_{BC} = V_{AE} = V_{DG} = V_{BE} =$
 - F) Find the current going thru the 8 Ω resistor.
 - G) Find the current going thru the 4 Ω resistor.
 - H) What is the I_T ?
 - I) Find R_T:
- 11. If a circuit has 3 A of current, how much charge moves in 10 seconds?
- 12. Using your answer from #11, how many electrons moved in the above 10 seconds?
- 13. What kind if energy does a battery give?
- 14. If a Volt is a J/C, how much energy does a 12 V battery give a 3 coulomb charge?
- 15. Which side of a battery does electricity come from?
- 16. Where does it go to?
- 17. Using the above rules, answer questions about the following diagram.A) Which switches have to be on to make electricity flow only thru resistor 1?
 - B) Which switches for only resistor 2 to have current thru it?
 - C) Which switches to by-pass both resistors?
 - D) Which switches for electricity to go thru both resistors?

