
Make the following circuit using 4 resistors and a 9 volt DC power supply.

Theoretical Values:

Coded Resistances:	Calculated Currents:	Calculated Voltage Drops:
R ₁ =	I ₁ =	V ₁ =
R ₂ =	I ₂ =	V ₂ =
R ₃ =	I ₃ =	V ₃ =
R ₄ =	I ₄ =	V ₄ =

What would be the voltage drop for R_1 when only S_1 is open?

What would be the voltage drop for R_1 when only S_2 is open?

Measured Values:

V =_____

Resistances:	Currents:	Voltage Drops:
R ₁ =	I ₁ =	V ₁ =
R ₂ =	I ₂ =	V ₂ =
$R_3 =$	I ₃ =	V ₃ =
R ₄ =	I ₄ =	V ₄ =

What is the voltage drop across R_1 when only S_1 is open?

What is the voltage drop across R_1 when only S_2 is open?