A-Day: Due Mon., Nov 27 (Assigned: 11/16) B-Day: Due Tues., Nov 28 (Assigned: 11/17)

2007 Momentum 1

p = mv	Notes:	Variable Name	Units	Variable
I = Ft	How hard it is to stop something. Can be neg or 0.	momentum	kgm/s	p (small)
$\mathbf{n}_{1} = \mathbf{n}_{1} + \mathbf{n}_{2}$	Causes a change of p.	Impulse	kgm/s or Nsec	Ι

1) Write the above on your variable and equation charts.

- 2) A 35 kg object has -450 kgm/s of momentum. Find its velocity.
- 3) Which has more momentum? (*choose one for each*)A. A car when going fast or slow?B. A heavy or light object going 10 m/s?
- 5) Find the momentum of the following objects:

- 6) Which of the objects in #5 has the momentum with the greatest <u>magnitude</u> (*disregarding direction*)?
- 7) Which of the objects in #5 has the most *inertia*?
- 8) Find the net momentum of all of the objects in #5 above (*find* Σp).
- 9) A 10 kg object is 5 m/s moving to the left while a 3 kg object is going 4 m/s to the right. (*Remember that left is negative.*)
 A) Find the momentum of the 10 kg object (we'll call this momentum 1 or "p₁"):
 - B) Find the momentum of the 3 kg object (p_2) :
 - C) Find the net momentum of both objects (Σp).
- A 25 kg object moving 3 m/s to the right while a 30 kg object is moving 4 m/s to the right (yes, same direction). Calculate p_{net}.
- 11) A 2 kg object initially going 4 m/s to the right is later going 8 m/s. Find Δv . (Remember that $\Delta = \text{final} \text{initial.}$)
- 12) A 3 kg object going 6 m/s to the right ends up going 3 m/s to the left. Being careful of negatives and positives, find the change of momentum of the object.

PreAP Momentum 1 p2

- 13) A 500 N force pushes on an object for 6 seconds.
 - A) Find the impulse on the object.
 - B) What is the change of momentum of the object?

C) Since the force is positive, will there be a positive or negative change of speed for the object?

- 14) How long would it take a 30 N force to get the same impulse as in Q13?
- 15) So do you have to use a big force to make a big impulse?
- 16) Positive or negative change of speed? (Think of a number line. [mmmmm, number lines])
 - A) ______ Vi = 3 m/s; Vf = -5 m/s
 - B) _____ Vi = 5 m/s; Vf = -3 m/s
 - C) _____ Vi = -3 m/s; Vf = -5 m/s
 - D) _____ Vi = 3 m/s; Vf = 5 m/s
 - E) _____ Vi = -5 m/s; Vf = -3 m/s

Turn to next page.

1)) In the previous chapter, a force does work which creates	evious chapter, a force does work which creates In this chapter a force is called an, which changes				
2)	So the change of momentum of an object equals the object's change of					
3)) How can a group of objects have a net momentum of zero?					
4)) A 3 kg object going 4 m/s to the right ends up going 6 m/s to the left. A) $p_i =$ B) $\Delta v =$	C) $\Delta p =$				
5)) Two objects at the collide. The diagram shows their speeds before and after the collision. before Mass 1	Mass 2 Mass 1 Mass 2				
	A) $\Sigma p_{before} = 6 \text{ kg}$	4 kg 6 kg 4 kg				
	B) $\Sigma p_{after} = \frac{1}{v = 5 \text{ m/s}}$	v = 0 m/s $v = 1 m/s$ $v = 6 m/s$				
	C) How do your answers in A and B compare?					
	This is ALWAYS the case: momentum is conserved.					
 A 2 kg object going 10 m/s to the right feels a +3 N force for 6 seconds. A) Calculate its initial p. B) Calculate the impulse. C) What is its final momentum? 						
	D) Calculate the final velocity of the 2 kg object.					
	C) Using a very simple equation, find the acceleration of the object.					
7)) Object 1 is pushed by a 10 N force. Object 2 is pushed by a 30 N force. I from rest to 10 m/s.	Both objects are 5 kg. The force accelerate them				
	 A) Since the objects are originally at rest, their initial momentum is: B) The final momentum of Object 1 is (p_{1A}): C) I 	Final momentum of Object 1 (p_{2A}) =				
	D) What is the change of momentum (Δp) for the Object 1: E) ΔE	$\Delta p_{\text{Object 2}} =$				
	F) Since $I = \Delta p$, how long does the 10 N force act on Object 1?					
	G) How long does the 30 N force act on Object 2?					
	H) Which force gave more momentum?I) Which object accelerates faster?					
	J) So, to accelerate an object you have two choices: a small force over a	time or a force over a time.				
8) 9) 10) 11)	 Two identical eggs are dropped from the same height. Egg A is dropped of Which one was moving faster just before it hit? Which one experienced a greater force? Which one survives? Why? (Don't use any words like "absorb".) 	on a concrete floor, Egg B on a pillow.				

PreAP Momentum 1 p4

- 12) A 5 kg object slows from 20 m/s to 15 m/s in 6 seconds.
 - A) Calculate the change of momentum.

B) How much impulse acted on the object?

- C) Find the force that caused this.
- 13) The graph at the right shows the motion of a 35 kg object. Calculate its momentum.
- 14) Physical or chemical change?
 - A) ____Burning paper. Why?
 - B) $\frac{1}{Why?}$ A sugar cube disappearing in water.
 - C) _____ If two liquids are put together and create heat?
 - D) _____Baking soda (a solid) and vinegar (a liquid) mix to create a gas.
 - E) _____Cutting up something

Preparing for the final exam, whether with your book (or the Internet or something...) answer the following: (And you had better do this part yourself...)

15) A) How is a black hole created?

B) Why is it called a black hole?

- 16) What is terminal velocity?
- 17) Which will have a greater terminal velocity a feather or a hammer?
- 18) What is escape velocity?
- 19) What is the escape velocity of the earth?

