Due 11_29

- 1) What kind of collision: elastic, inelastic, perfectly inelastic?
 - A) _____The two objects stick together.
 - B) _____ The two objects don't stick together.
 - C) ____Kinetic energy is conserved.
 - D) _____ The experiment cars with the Velcro sides towards each other.
 - E)_____ The experiment cars with the magnets towards each other.
 - F) ____Some Ek is lost.
- 2) Yes, No, or Maybe? (And give reasons why.)
 - A) _____In a noisy collision Ek is conserved.
 - B) _____A small force can produce the same change of momentum as a large force.
 - C) _____ If an object is thrown by a person momentum is conserved.
 - D) _____Two moving objects have a net momentum of zero.
- 3) Book Ch6: #8, 9, 20,
- 4) Give an example of momentum NOT being conserved.
- 5) Give an example of there being MORE kinetic energy after a collision than before.
- 6) A 12 kg object going 4 m/s strikes a wall and bounces back going 3 m/s. If the wall exerts a 120 N force, A) How long was the object in contact with the wall?
 - B) How much kinetic energy was lost?
 - C) Where did this lost energy go?
 - D) What kind of collision was it?
- 7) An 85 kg person fires a 5 g bullet from a gun. The bullet is shot with an initial velocity of 425 m/s.
 - A) If the person is standing on roller blades, how fast does the person move backwards?
 - B) If the bullet hits an 85 kg stuntman (also on roller blades [wearing a bullet proof, Kevlar vest, of course]), how fast does the 85 kg stuntman move backwards?
 - C) In movies people are shot with bullets and fly backwards from the bullet striking them. How does this happen?
- 8) A 3 kg block of wood is at rest at the top of a frictionless, 10 m long ramp inclined at 30° . The block is struck by
 - a 1 kg piece of clay going 5 m/s. The clay sticks to the block. The block slides down the ramp.
 - A) What kind of collision is this?
 - B) Find the velocity of the block and clay combination after the collision.
 - C) Find the velocity of the block and clay at the bottom of the ramp.
 - D) At the bottom of the ramp the block hits a 2 kg ball. Afterwards striking the ball the block is still going 0.5 m/s. How fast is the ball going?

- 9) The two satellites are identical (same mass, same orbit). The masses of the planets are equal, but planet X is smaller.
 - A) For planet X: draw m_1 , m_2 , and r.
 - B) How do the forces of gravity compare?
 - C) Since Planet X is smaller, it is more ____
 - D) If the satellites were to land on the planet surfaces, which probe will be the heaviest?
- 10) A spaceship (m = $3.5 \times 10^5 \text{ kg}$) is $8.9 \times 10^7 \text{ m}$ above a planet (m = 5.8×10^{22} ; radius of planet = 2.45×10^7). Find the force of gravity between the spaceship and planet.

- 11) For the two objects at the right, what would be "r" in the gravity equation?
- 12) Mark the ones that depend on radius (radius dependent).

A)	ω	C) v _t	Ε) τ	G)θ
B)	Ι	D) α	F) s	

13) Mark the ones that do not depend on radius (radius independent).

- 14) Use the graphic of the rotating platform at the right to answer the following . Answer: I (Inside wheels); O (outside wheels); N (neither or both).
 - A) ____ Which has the greatest radius?
 - B) ____ Which have the fastest tangential speed?
 - C) ____ If it comes to rest, which have the fastest angular acceleration?
 - D) ____ Which travels the least arc length?
 - E) ____ Which has the smallest radius?
 - F) ____ Which have the fastest angular speed?
 - G) ____ As it starts rotating, which has the slowest tangential acceleration?
 - H) ____ Which have the slowest tangential speed?
 - I) ____ Which travel the greatest angular displacement?
 - J) ____ Which have the slowest angular velocity?
 - K) ___ When it slows, which have the greatest tangential acceleration?
 - L) _ Which travel the largest arc length?
- 15) A) Convert 3 revolutions to radians.

The following two columns are designed to help you see the correlations between linear and rotational quantities and equations. Remember that **all angles in the equations must be in radians!** Calculate out all numbers (don't leave as fractions).

 A car travels 240 meters in 12 seconds. Find the velocity of the car. 	20) A wheel rotates 2 revolutions in 3 seconds. Find the angular velocity of the wheel.
17) A car going 300 m/s slows to 100 m/s in 10 seconds.Find the acceleration of the car.	21) A wheel spinning 8 rad/sec slows to 2 rad/sec in 3 seconds. Find the angular acceleration of the wheel.
18) A car going 20 m/s stops in 80 meters. How long did it take to stop?	22) A wheel turning 3 rev per second stops in 6 revolutions. How long did it take to stop?
 19) A box sliding down a hill going 3 m/s accelerates at 2 m/s². How fast is going after 4 seconds? 	 23) A wheel turning 2 rad/sec accelerates at 3 rad/sec². How fast is it spinning after 5 seconds?

A platform turning clockwise.