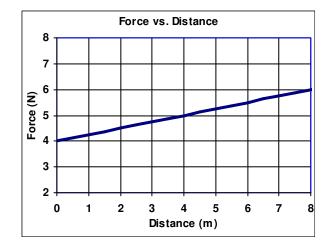

A-Day: Due Mon., Nov 3 (Assigned: 11/30) B-Day: Due Tues., Nov 4 (Assigned: 10/31)

## 2008 PreAP Energy 3

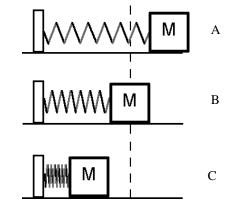
- 1. A ball is dropped from 35 meters up. How fast is it going 15 meters above the ground?
- 2. A 4 kg ball is dropped. If air friction exerts 3 N of force and the ball is going 8 m/s just before it hits the ground, find how high up the ball was when it was dropped.
- 3. An object is at the top of a 12 m long ramp at a 45° angle. If  $\mu_k = .25$ , how fast the object is going at the bottom of the ramp?
- 4. A 8600 N hedgehog (do you want a snail, instead?) is dropped 1.5 m onto a spring (k = 2.34 N/m).A) How far is the spring compressed?
  - B) If the spiny little pig insectivore rebounds to a glorious 1.45 m, how much energy was lost?
  - C) How efficient was the energy transfer?
- 5. In order to lure Tarzan into a trap, Jane is captured by swarthy entrepreneurs. Gallant, though a little torpid, Tarzan grabs a 25 m long vine. If the vine is at an angle of 35° to the vertical to begin with and he pushes off going 2 m/s, A) how fast is he moving at the very bottom of the swing?
  - B) In an unexpected spark of genius, Tarzan lets go of the vine at the very bottom of the swing. If, at this point, he is 20 m above the ground, how far away does he land?
- 6. The diagram at the right shows a 2 kg ball at rest on the first of three platforms above a table. The first platform is 1 m above the table. Each platform is 1 m above the other.
  - A) How much energy is necessary to raise the ball to the second platform?
  - B) So, relative to the second platform, how much potential energy does the ball have when sitting on the first platform?
  - C) How much potential energy does the ball have relative to the table?
  - D) How much potential energy does the ball have relative to the top platform?






35

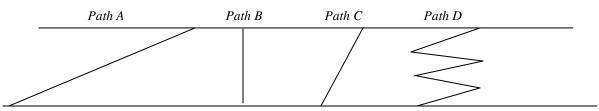
Tarzan


starts here

## 2008 PreAP Energy 3—p2

7. From the graph at the right, how much work is done on the object in the first 4 seconds?




- 8. The diagram at the right shows a mass-spring system sliding back and forth on a frictionless surface. The spring is fully stretched at position A and fully compressed at position C.
  - A) What kind of energy does it have at position A?
  - B) What kind of energy does it have at position B?
  - C) How does the amount of energy compare at B and C?
  - D) How does the amount of total energy compare at A, B, and C?



- 9. A 4 kg object is at rest on table. If it is pushed by a 6 N force for 8 m ...A) How much energy is given the object?
  - B) How fast should the object be going?
  - C) If there was friction on the table ( $\mu = 0.12$ ), how fast is it going?
  - D) How much energy was converted to the heat due to friction?
  - E) How efficient was the energy transfer?
- 10. How much work is necessary to lift a 45 N object 18 meters up into the air?

Remember that "x" in the Elastic Potential Energy equation is the distance a spring is compressed or stretched from its relaxed position (also known as the equilibrium or unstretched position).

11. A spring with an unstretched position of 1.2 meters is compressed to a position of 0.8 meters. The spring constant of the spring is 0.12 N/m. If when released it launches a 0.85 kg ball, how fast is the ball launched?



- 12. The above shows 4 paths that could be taken to get from the ground to a vertical position "h".
  - A) If there is no friction on any of the paths, which path will give an object the most potential energy?
  - B) If there is no friction, which path requires the most work to move an object?
  - C) Which path will require the least amount of force?
  - D) Which path will require the most force?
  - E) Which path has the greatest distance?
  - F) Which path will require the most time?
  - G) Which path will use the most power?
  - H) Which path will use the least power?
  - I) Which path will seem the easiest?
  - J) If there IS friction, which path will require the most work?
  - K) If there IS friction, which path will seem the easiest?
- 13. Express the units for work as base units (only sec, meters, kg, etc.).
- 14. If you triple the mass, how does the potential energy change?
- 15. If you half the velocity, by how much does the kinetic energy change?
- 16. If you half the mass and double the velocity, by how much does the kinetic energy change?
- 17. A ball is rolled down a frictionless hill. The ball has 140 J of energy at the top of the hill.
  - A. What kind of energy is it losing as it rolls down?
  - B. What kind of energy is it gaining?
  - C. How does the total mechanical energy change during the trip?
  - D. If there is friction, how does the mechanical energy change during the trip?
- 18. Sketch these graphs: A) Ep vs height; B) Ek vs mass; C) Ek vs velocity.