A-Day: Due Thurs., 10/14 (Assigned: 10/14) B-Day: Due Fri., 10/15 (Assigned: 10/15)

2008 PreAP Forces 2

- 1. Static or Kinetic Friction?
 - A. _____ Usually the smaller one.
 - B. _____ If this is greater than the applied force, the object will slow down and eventually stop.
 - C. _____ Between your shoes and the ground when you are walking normally.
 - D. _____ Use to calculate acceleration.
 - E. _____ When you are going down a slide.
 - F. _____ How much force is needed to keep an object sliding.
 - G. _____ When a car "loses traction".
 - H. _____ Only exists when the object is not moving.
 - I. _____ Maximum friction before an object slides.
- 2. A parachutist falling thru the air feels weightless.
 - A. Do they still have weight?
 - B. So, what we feel as our weight is really what?
- 3. Heavier, lighter, or same as normal weight?
 - A. ____ When an elevator starts moving up?
 - B. ____ When an elevator is between floors?
 - C. ____ When an elevator is stopping while moving up?
 - D. ____ When an elevator starts down?
 - E. ____ When an elevator is stopping while moving down?
- 4. If there is friction on the table at the right, A. Draw the force diagram for mass 3.
 - B. Write Newton's second law for mass 3.

5. Find the normal forces for the following three masses.

- A 80 kg person is in an elevator. The elevator accelerates up at 3 m/s².
 A. Find the normal force on the person.
 - B. How heavy do they "seem"?
- 7. If $\mu_s = 0.65$ and $\mu_k = 0.5$ and $F_N = 120$ N, calculate F_s and F_k .

More on Back cstephenmurray.com

8. For the mass at the above

- A. Which friction is when the object is gripping the table?
- B. Which friction is when the object is slipping or sliding along the table?
- C. When do you add these two frictions together?
- D. How much force is necessary to keep this object moving?
- B. How much force is necessary to start this object sliding?
- C. If this object starts at rest, will this object slide?
- D. Find the acceleration of the object.
- E. Find the normal force on the object, if it is not accelerating in the y-direction.
- F. Find μ_s and μ_k .
- 9. For the 4 kg object at the right. A. Find the normal force on the object. B. If $\mu_s = 0.35$ and $\mu_k = 0.2$, find Fs and Fk.
 - C. How much force is pulling to the right?
 - D. Will the object slide? (Prove it.)
 - E. If it does slide find its acceleration.
- 10. The cart at the right has two equal masses pulling on it.
 - A. Does the cart have to be at rest?
 - B. Could the cart be accelerating?
 - C. Does the cart have balanced or unbalanced forces acting on it?
 - D. Therefore, the velocity has to be:
 - E. Is it at equilibrium or not?

11. Tell me everything you know about objects at equilibrium. (v, a, direction, forces, $\Delta v...$)