

Friction (F_f) - Friction is a force that opposes motion. There are two kinds: static (F_s) and kinetic (F_k) . **Static Friction**—stationary friction; F_s tries to keep an object sticking to a surface. You must apply a force just greater than F_s to start the object sliding. F_s is usually greater than F_k . Use F_s to decide if the object moves.

Kinetic Friction—sliding friction; F_k tries to stop an object from sliding. You must use F_k to find acceleration, since an object must be moving to be accelerating.

NEVER add F_s and F_k—once it moves F_s no longer exists!

This object will move because 20 N > 15 N

 $\Sigma F_x = ma_x$ $11 - 20 = 3a_x \qquad Use \ F_k \ to \ calculate$ $-9 = 3a_x \qquad (because \ it's \ moving).$ $a_x = -3 \ m/s^2$

Negative means the object is accelerating to the left. $\mathbf{F}_{s} = \boldsymbol{\mu}_{s} \mathbf{F}_{N}$ and $\mathbf{F}_{k} = \boldsymbol{\mu}_{k} \mathbf{F}_{N}$ ($\boldsymbol{\mu}$ is the coefficient of friction)

Remember that you must find F_N first in order to find friction (see top of page).