
Kinematics at an Angle

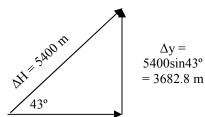
You should already know: $\Delta x =$ horizontal displacement (change of position in the x direction). $\Delta y =$ vertical displacement (change of position in the y direction).

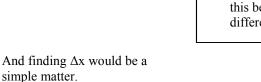
But not all objects are moving vertically or horizontally. Sometimes objects move at angles.

The kinematic equations work in one direction only: x, y, or H, as long as all of your quantities (v, a, x, etc) are in the same direction.

Horizontal Kinematic Equations	Vertical Kinematic Equations	Hypotenuse Kinematic Equations
$\Delta x = \frac{1}{2} (v_{xi} + v_{xf}) t$	$\Delta y = \frac{1}{2} (v_{yi} + v_{yf}) t$	$\Delta H = \frac{1}{2} (v_{Hi} + v_{Hf}) t$
$v_{xf} = v_{xi} + a_x t$	$v_{yf} = v_{yi} + a_y t$	$v_{Hf} = v_{Hi} + a\Delta t$
$\Delta x = v_x t + \frac{1}{2} a_x t^2$	$\Delta y = v_{yi}t + \frac{1}{2}a_{y}t^{2}$	$\Delta H = v_{Hi}t + \frac{1}{2}a_Ht^2$
$v_{xf}^{2} = v_{xi}^{2} + 2 a_{x} \Delta y$	$v_{yf}^{2} = v_{yi}^{2} + 2 a_{y} \Delta y$	$v_{Hf}^{2} = v_{Hi}^{2} + 2 a_{H} \Delta y$
$\Delta x = v_{xf} t - \frac{1}{2} a_x \Delta t^2$	$\Delta y = v_{yf} t - \frac{1}{2} a_{y} t^{2}$	$\Delta H = v_{Hf}t - \frac{1}{2}a_{H}t^{2}$

Example 1:


Part A: A rocket starts on the launch pad at rest at an angle of 43°. Its engines fire for 30 seconds giving 12 m/s² of acceleration. How far did the rocket go?
Part B: How much altitude did the rocket gain in that time?


Solution: Since the acceleration, velocity, time, and distance are all at 43°, then you are looking for the length of the *hypotenuse*. Just use one of your kinematic equations at 43°.

A: How far did the rocket go?

 $\begin{array}{ll} \underline{Variables:} & \underline{Equation:} \\ \overline{V_{Hi} = 0 \ m/s} \ (at \ rest) & \Delta H = V_{Hi}t + (1/2)a_{H}t^{2} \\ a_{H} = 12 \ m/s^{2} & \Delta H = 0(30) + (1/2)12(30)^{2} \\ t = 30 \ sec & \Delta H = 0 + 6(900) \\ \Delta H = \underline{\qquad} & \Delta H = 5400 \ m \end{array}$

B: How much altitude did the rocket gain?

IMPORTANT! V θ $a = -9.8 \text{ m/s}^2$ For projectiles you can't do this because V and a are in different directions.

Copyright © 2007, C. Stephen Murray