What it is:

- A piece of metal with two sets of electric coils (windings). The coils can be interwoven or on different parts of the transformer.
- The input coils are called the primary (first side). The output coils are the secondary (second side).

What it does:

 $\begin{array}{l} \mbox{Transforms one AC voltage to another.} \\ \mbox{The side with the most coils has the most voltage.} \\ \mbox{Step-up transformer: } V_1 < V_2 \mbox{ (increases voltage)} \\ N_1 < N_2 \mbox{ (secondary has move coils)} \\ \mbox{Step-down transformer: } V_1 > V_2 \mbox{ (decreases voltage)} \\ N_1 > N_2 \mbox{ (secondary has less coils)} \end{array}$

How it works:

- Changing I (current) makes changing B (magnetic field). This changing B is called the magnetic flux (Φ) .
- The Φ in the primary (Φ_p) is transferred to the secondary via the metal casing.
- For a very efficiently designed transformer:

 $\Phi_p = \Phi_s$ and $P_p = P_s$ (power).

Transformers work by Φ , so there must be a changing B, and a changing I: transformers only work with AC current!

A Step-Up Transformer:

Increasing V by Increasing N

The side with the most coils (N) will have the most voltage (V).

 $\Phi_p = \Phi_s$ The Magnetic Flux is equal on both sides.

To make it a step-down transformer, apply voltage in reverse: to the right side. Since the left side has more coils $(N_1 > N_2)$ the induced voltage (on the left) will be less: $V_1 > V_2$.

Primary: the side you put V in. *Secondary*: the side you are getting V out.

You put voltage on the primary to transform it to a different voltage at the secondary.

VARIABLES DEFINED:

"p" stands for the primary or side in. "s" stands for the secondary or side out. V - voltage; N - number of coils. V_p is the voltage of the primary (V_{in}). V_s is the voltage of the secondary (V_{out}). N_p is the number of coils in the primary. N_s is the number of coils in the secondary.

How the Math Works:

Faraday's Law of induction: $emf = -N \frac{\Delta[AB(\cos \theta)]}{\Delta t}$ The magnetic flux (Φ) is defined as = $\Delta[AB(\cos \theta)]$ So, $V = -N \frac{\Phi}{\Delta t}$. Solving for Φ , $\Phi = \frac{V\Delta t}{-N}$. In a transformer: $\Phi_p = \Phi_s$, so $\frac{V_p \Delta t_p}{-N_p} = \frac{V_s \Delta t_s}{-N_s}$. Since it happens in real time: $\Delta t_p = \Delta t_s$. So in a transformer, $\frac{V_p}{V_s} = \frac{N_p}{N_s}$ OR $\frac{V_p}{N_p} = \frac{V_s}{N_s}$

Also,
$$P_p = P_s$$
 So, $V_p I_p = V_s I_s$.

If you increase the voltage, you decrease the current.

Transformer Equations:
$$\frac{V_p}{V_s} = \frac{N_p}{N_s}$$
 and $V_p I_p = V_s I_s$

Electric Motors and Generators.

Electricity goes in to make electromagnetics, create a magnetic force, and motion (work out).

Motors can be reversed: put work in, get electricity out: that's a generator.

Usually there are permanent magnets on the motor housing that help push the center electromagnets (on the armature).

Commutator – keeps the electricity (and therefore B) in the correct coils at the correct time. Looks like a circle with breaks in it.