A-day: Due Wed., May 27 B-day: Due Thurs., May 28

2009 Magnetism 6

Name: ___

I cannot put everything on one homework. What was covered on Magnetism 5 will not be covered on this homework. Also, there is enough information on Transformers in the notes and the website. I won't go over it again.

- 1. Scientists need to determine the charge of a particle, so they project it into a magnetic field. By watching its path, they will know its charge.
 - A. ____ Which path proves it is negatively charged?
 - B. ____ Which path proves it has no charge?
 - C. ____ Which path proves it is positively charged?

This is one way that scientists can determine the charge of a particle. The picture at the left is that of "pair production", when an electron and a positron (an anti-electron) are formed in a nuclear accelerator. (I don't know which is which.) The two particles have equal mass (more mass would be a much larger spiral path), but you can see by the opposite paths that they have opposite charges. The positron is the antimatter particle of an electron.

$$F_{mag} = q v B$$

2. If an electron feels 3500 N of force when moving thru a 25 T magnetic field. How fast is it moving? $(1 e = -1.6 \times 10^{-19} C)$.

F. ____ A current carrying wire.

G.____ A moving charge.

H. _____ Another magnetic

I. ____ Iron

3. Attracted to a magnetic: yes or no?

- B. ____ Steel
- C. ____ A penny
- D. ____ A compass
- E. _____ A copper wire with no electricity flowing. J. _____ A charge at rest (a stationary charge).
- 4. Permanent magnet, temporary magnet, electromagnet?
 - A. _____ A piece of iron when next to a magnet.
 - B. _____ Will not lose its magnetism.
- 5. Use the diagram at the right to answer the following.
 - A. The coils of wire is called a: ___
 - B. If positive current flows into A and out B, which side is North?
 - C. If positive current flows into B and out A, which side is North?
 - D. So, when the current flowing thru the wires is reverse, the direction of the magnetic field is r_____.
 - E. Where is the magnetic field the strongest: inside the center of the coils; at the opening; on the side of the coils?

- 6. A. If the left loop is not moving, is there an induced current? The loop is then moved from right to left.
 - B. When is there current in the loop?
 - C. As the loop is exiting the field (leftmost loop), is the induced current CW or CCW?

cstephenmurray.com

D. ____ Can have its poles switched by a second magnet.

C. ____ Loops of wire when electricity is flowing.

- 7. The loop is rotating between the ends of a horseshoe magnet. The right side of the loop is moving down.
 - A. What kind of current does the turning loop produce as it does a complete revolution (as it continues to rotate)?
 - B. At the position it is right now, does current come out S or out T?

- 8. A proton is moving between two bar magnets as shown above.
 - A. Which direction does B point between the magnets?
 - B. Which direction is the magnetic force on the proton?
 - C. Draw the compass needle in the compass at the right side of the diagram.

- 9. A bar magnet is split in half. Each of the two halves is also halved.
 - A. Label each of the bars.
 - B. How small would the bar be to have a single North or single South pole?

It's been quite a journey. I appreciate those of you that have worked on the homework yourself and taken the time to actually learn the material. I hope some of you have also realized that paying attention and doing homework can be useful and, at times, enjoyable.

And in the words of the inimitable Porky Pig: "That's All Folks."

