Electric Fields

- 2. A. Is this a + of-charge?
 B. Why? Espoint dir. at + charge moves
 - C. Is the field stronger at point A or at point B? \mathcal{E}
 - D. Why? Close
 - E. How would the picture change if the amount of charge decreased? less likes
- 3. Draw the electric field around the following.

- -4μC) 30 cm
- 4. A. Calculate the magnitude of the electric field at a point 30 cm away from a -4μ C charge. $E = \frac{4 \times 10^{-6}}{(-3)^2} = 4 \times 10^{5} \text{ Acc} \quad \text{or } 40,000 \text{ P/C}$
- $(-4\mu C)$ 30 cm $(2\mu C)$
- B. What draw the direction of the field at that point. to ward the neg.

 C. What is the magnitude of E if a 2µC charge is put at that point?

 52ME (2bout position only)
- D. Calculate the force between them. $4 \times 10^{5} \frac{V}{C} (2 \times 10^{-6} C) = 8 \times 10^{3} V$
- 5. Two charges create the electric fields shown at the right.
 - A. What are the signs of the two charges?
 - B. If they are equal distance from the point, how can the electric field be greater by one of the charges?
 - neg charge is bigger

 C. Calculate the net electric field at the point (magnitude and direction). 152 M/C at 34.7
- ① 10 cm
- D. If a 2C charge is placed there, what force will it feel? (152 $\frac{1}{2}$) (2c) = 304 N at 34,7°
- E. Challenge: How much charge causes the 100 N/C electric field? $E = K_C \frac{9}{r^2} \quad \text{SO} \quad 9 = \frac{Er^2}{K_C} = \frac{100(1)^2}{9 \times 10^9} = 1.1 \times 10^{-10} \text{ C}$

