In Class Review 1 - Harmonic Motion

Which ones are harmonic motion?

\qquad A tennis ball dropped on the ground. A swinging pendulum.
A guitar string being plucked.
\qquad A meter stick vibrating at one end.

When a train is coming toward you it's pitch goes up or down? As it passes you the pitch goes up or down? This is known as the:

If the angle between A and E is 60°, what is the amplitude of the pendulum (in degrees)?
90° out-of-phase with A is: \qquad .
180° out-of-phase with A is: \qquad .

The pendulum will stop at: \qquad .

As the pendulum loses a \qquad , it loses e \qquad , which is known as d \qquad -.

Directly proportional (one goes up, the other does) or Inversely proportional (one goes up , the other goes down)?
___ A sound's pitch and wavelength. \qquad A spring's force and displacement.
Amplitude and Energy
Period and frequency.

If a transverse wave is moving to the left, which way will it oscillate?
If a longitudinal wave is moving to the left, which way will it oscillate?
A wave undergoes 25 cycles in 6 seconds. Find its period.

A spring takes 8 seconds to do 12 cycles. Find its frequency.

A pendulum completes half a cycle in 1 second. Find angular frequency.

A spring moves 16 cm side-to-side. What is its amplitude?

What distance does it travel in two complete cycles?

What maximum force does the spring provide ($\mathrm{k}=25 \mathrm{~N} / \mathrm{m}$)?

A 150 g object is put onto a spring which stretches 12 cm .
A. Find its spring constant.
B. How much force is necessary to pull it an additional 3 cm ?
(Gravity pulls it 12 cm ; you need an additional force to pull it 3 cm more.)

How does it affect its period?
(Period is longer, shorter or unchanged?)
\qquad Decreasing a pendulum's amplitude.Increasing a spring's spring constant.Decreasing a pendulum's mass.Decreasing a spring's mass.Increasing a spring's amplitude.
\qquad Increasing a pendulum's length.

Graph A

Graph B

Graph C

How many cycles does graph A show?
Graph A and C have the same:
B and C have the same:
Match Graphs to Pendulums: Graph A: \qquad ; Graph B: \qquad ; Graph C: \qquad .

When a pendulum has a higher spring constant it moves faster or slower?

Match Graphs to Springs: Graph A: \qquad ; Graph B: \qquad ; Graph C: \qquad .

If $\mathrm{M}=2 \mathrm{~kg}$, find the period of Spring 2 .

Show what will happen as the straight wave goes through the hole.

Spring 2; k $=20 \mathrm{~N} / \mathrm{m}$

Spring 3; k=40N/m

A fellow astronaut is using a hammer to input a cotter pin into a fitting outside the International Space Station. If you are 30 meters away from the hammer in a Russian Soyuz Rocket, how long does it take for the sound to get to you?

Which of the following changes the speed of a wave?
A. \qquad Amplitude; B. \qquad Period; C. \qquad Wavelength; D. \qquad Pitch; E. \qquad Medium.

If the fundamental frequency of a standing wave is 60 Hz , give the frequencies of the first 6 harmonics:

If wave B has frequency of 128 Hz be harmonic with the above harmonic 2?
Would H_{2} and Wave B constructively or destructively interfere with each other?
(This is why two notes just a bit out of tune "fight" with each other, creating "beats".)
Draw harmonic 4 at the right, with nodes and antinodes marked, the wave form, and 1 wavelength shown.

