A-Day: Due Wed., Feb 4 B-Day: Due Mon., Feb 9

2009 Harmonic Motion 2

2. Period, Amplitude, or Frequency?

A	20°	E Maximum displacement from its	H Decreases over time.
B	1.25 seconds.	equilibrium position.	I "A"
С	14 cm	F How many cycles per second.	J "T"
D	280 Hz	G Time for one cycle.	K "f"

- If the period of a pendulum is 0.5 seconds, calculate the frequency of the pendulum.
 If the frequency of a wave is 1.35 Hz, find its period.
- 5. Use the pendulums at the right to answer the following. Notice IV. has smaller masses.
 - A. Which has the most energy?
 - B. What is the amplitude of I?
 - C. Which has the smallest period: I or II?
 - D. From the lab: which pendulum has the longest period: III or IV?
 - E. Why?
 - F. Which pendulum has the longest period: I or III?
- 6. If you double the mass on the end of a pendulum, does T increase or decrease?

Imagine a pendulum moving from the top of the graph to the bottom with a pen touching the graph. The graph moves to the right. The graph shows the position of the pendulum.

- 7. Use Graph 1 to answer the following:
 A. Amplitude = B. # of cycle in 1 second?
 C. Calculate the frequency shown on Graph 1.
 - D. Calculate the period shown on Graph 1.
 - E. Over time, the pendulum will d_____
 - F. Where will it come to rest?
- 8. Use Graph 2 to answer the following: A. Amplitude = B. f =

C. T =

- D. How many cycles are shown?
- E. Equilibrium position =
- 9. Graph 1 or Graph 2
 - A. ____Has the greatest amplitude.
 - B. ____Has the longest period (most time).
 - C. ____Has the greater frequency.
 - D. ____Has the higher equilibrium position.
- 10. If the amplitude increases, how does the graph change?

11. If the period gets smaller, how does the graph change?

cstephenmurray.com

2009 Harmonic Motion 2

12. If a pendulum is 34 cm long, find its period.

Example: How long is a pendulum that has a period of 3.2 seconds?

 A pendulum has a period of 0.85 seconds. How long is the pendulum <u>in centimeters</u>.

From the Lab:

A. Amplitude.

B. Mass

14. Was it better to measure the period of the pendulum with only cycle or 5 cycles?

Why?

- 15. What is the experimental variable in Table 1?
- 16. What are the control variables in Table 1?
- 17. What were students trying to understand in Table 1?
- 18. What were students trying to understand in Table 2?

19. How do the following affect the period of a pendulum?

Table 1 Length Amplitude Period Mass 14g 10 cm 10° .64 sec 14g 15 cm 10° .79 sec 25 cm 10° 1.1 sec 14g

Table	e 2

Mass	Length	Amplitude	Period
14g	10 cm	10°	.64 sec
20g	15 cm	15°	.79 sec
5g	25 cm	25°	1.1 sec

RNA – Moves from nucleus to ribosomes. Only 1 side of the ladder. Ribose sugar instead of deoxyribose A with U (U not T) and C with G

DNA to mRNA—transcription—moves to ribosome. mRNA to tRNA—translation (in ribosomes).

- E. _____Double helix structure.
- F. _____A goes with T

G. ____Carries code to ribosomes.

H. _____Has uricil

DNA

G A C A DNA

DNA	RNA
А	
С	
G	
U	
G	

C Length.

DNA basics

DNA – Found in the nucleus of all cells Contain the characteristics of a cell. Double helix (ladder structure) Ladder sides made up of a phosphate and deoxyribose sugar; ladder steps: nitrogen bases (A,T,C,G) Nitrogen bases pair up as: A with T/ C with G.

- 20. DNA, mRNA, or tRNA
 - A. ____ Contains nitrogen bases.
 - B. ____ Created in transcription.
 - C. _____ Must stay in the nucleus.
 - D. _____ Created in replication.
- 21. Given the following genetic codes give the paired sequence.