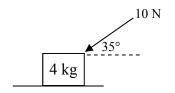
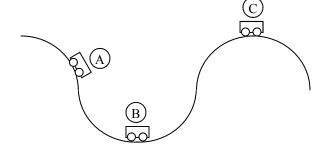
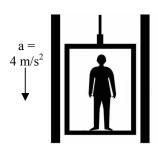
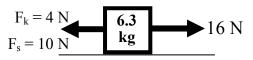

A-Day: Due Thurs., Oct 30 (Assigned: 10/28) B-Day: Due Fri., Oct 31 (Assigned: 10/29)

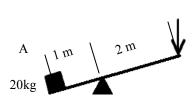
2008 Forces 4

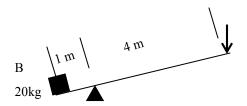

- 1. A cart is attached to two masses.
 - A. Label the weights of the two masses.
 - B. Will the cart have a positive or negative acceleration?
 - C. Draw the force diagram for the cart.
 - D. What is a_v for the cart?
- 2. Use the diagram at the right to answer the following.
 - A. Which forces are +y forces?
 - B. Which forces are -y forces?
 - C. Which forces increase the normal force?
 - D. Which forces decrease the normal force?
 - E. Which forces do not change the normal force?
 - F. Using Max, what is the acceleration in the x-direction?


- G. Because it is not moving in the y-direction, what is a_v?
- H. Using May, calculate F_N .
- 3. All three of the masses below are at on a table. Calculate the normal force for each.



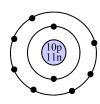

- 4. When we feel weightless it is because this force is missing.
- 5. The diagram at the right shows a cart on a roller coaster.
 - A. At which position do you feel heavier?
 - B. At which position do you feel lighter?




- 6. A 60 kg man is riding in an elevator that is accelerating downward at 4 m/s2.
 - A. Is the acceleration + or -?
 - B. Draw the forces on the man.
 - C. Are the forces vertical or horizontal?
 - D. Is this a Max or May question?
 - E. How heavy does the person seem?

7. If μ_s = 0.65 and μ_k = 0.5 and F_N = 120 N, calculate F_s and F_k .

- 8. For the mass at the left
 - A. How much force is necessary to keep this object moving?
 - B. How much force is necessary to start this object sliding?
 - C. Will this object slide?
 - D. Why?
 - E. When it is accelerating, is it sliding or at rest?
 - F. Which friction do you use when it is accelerating?
 - G. Calculate the acceleration of the object.
- 9. Since the above 6.3 kg object on a table...
 - A. What is the normal force on the object?
 - B. Calculate the coefficient of static friction on the object.



- 10. Here's the way to think about simple machines. If you use twice the distance, you only need 1/2 the force to lift the object.
 - A. With lever A, how much WEIGHT are you lifting?
 - B. How much force is necessary to lift object A
 - C. With lever B, since you use times as much distance, you only need the force to lift it.
 - D. How much force is necessary to lift object B?
- 11. How many protons does carbon have?
- 12. How many protons does chlorine have?
- 13. What is the atomic number of Silicon?
- 14. If I take away 1 proton from Oxygen, what element do I create?
- 15. If I add 1 neutron to carbon, what element do I have?
- 16. If two atoms have the same number of protons, but different number of neutrons, what do we call them?
- 17. If you add electrons to an atom, it becomes a negative _____.

6	7	8	
C	N 14.007	O 15.999	F
Carbon	Nitrogen	Oxygen	18.998 Fluorine
14	15	16	-
Si	P	\mathbf{S}	Cl
28.086	30.974	32.066	35.453
Silicon	Phosphorus	Sulfur	Chlorine

18. Is this atom neutral, positive, or negative?

