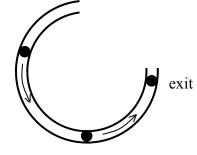
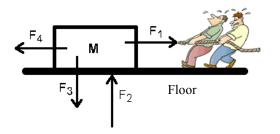

A-Day: Due Mon., Oct 20 (Assigned: 10/20) B-Day: Due Tues., Oct 21 (Assigned: 10/21)

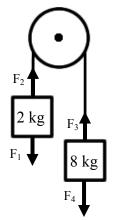
2008 Forces 1


- 1. For each of the following pairs of objects, which one has more inertia?
 - A. A freight train or a car?
 - B. A ping pong ball or a baseball?
 - C. A fast bowling ball or a slow bowling ball?
- 2. Identify the following forces as F (applied), T, F_W , F_f (friction), or F_N .
 - A. Due to a string. G. _____ You place a heavy object onto a board. ____Opposes weight for objects on surfaces. The board will break if this is too small. Β. C. You push down on an object on a table, H. Always vertical. this increase. _____ If a surface is tilted, this changes direction, too. I. Has the units of newtons. Caused by gravity. J. D. Would decrease on the moon. _____ Doesn't exist for hanging objects. E. K. Decreases if a surface is smooth. F.
- 3. While a force is acting on an object, give three things that can happen.

- 4. What is the net force on M_1 ?
- 5. What is the net force on M_2 ?
- 6. What is the net force on M_3 ?
- 7. Which of the above masses: M_1 , M_2 , or M_3 ?
- A. ____ Which could be at rest?
- B. ____ Acceleration is negative.
- C. _____ Acceleration is positive.
- D. ____ Has a net force of 0 N.
- E. _____ Has a net force (Fnet $\neq 0$)

8. A ball is moving inside a tube, as shown on the diagram at the left.A. When it leaves the tube, will it have a circular path or a straight path?


B. What do we call any force that keeps an object moving in a circular path?


- D. A 20 kg mass or a 10 kg mass?
- E. A rock on the earth or a rock in space?
- F. A fast baseball or a bowling ball at rest?

Forces 1-p2

- Static or kinetic friction? 9.
 - A. Is slipping friction.
 - ____ Is gripping friction. Β.
 - C. Acts to keep an object from moving.
 - Tries to stop an object that is already sliding. D.
- 10. Two very small people are pulling a box. Identify the four shown forces as F_{Applied}; T; F_W; F_N.
 - A. F_1 the two men pulling WITH A ROPE.

 - B. _____ F_2 the force pushing up by the floor. C. _____ F_3 the force pulling down on the mass.
 - D. _____ F_4 the force trying to stop the mass from moving.
 - Which force is in the negative x-direction? Е. ____
 - F. Which force is in the positive y-direction?
 - G. _____ Which force is in the positive x-direction?
 - Which force is in the negative y-direction? H.
 - I. Which forces would be used in this equation: $\Sigma F_v = ma_v$?
 - J. Which forces would be used in this equation: $\Sigma F_x = ma_x$?

- 11. Two masses are attached by a rope that is threaded around a pulley, as shown. Identify the four forces.
 - A. ____ F_1 force pulling down on the 2 kg mass.
 - B. _____ F_2 the force of the rope pulling up on the 2 kg mass.
 - C. F_3 the force pulling up on the 8 kg mass.
 - F_4 the force pulling down on the 8 kg mass. D.
 - E. Which two forces are equal?
 - F. Why?
 - G. Calculate F1.
 - H. Calculate F4.
 - I. Which forces are y-direction forces?
 - J. Which forces are x-direction forces?