A-day: Due Thurs., Sept 10 B-day: Due Fri., Sept 11

2009 Linear Motion 1

Use your "Speed" notes and "Acceleration" notes to answer the following:

1. The dots at the right show the positions of four different objects each second.

(There can be more than one answer for each question).

- A. Which of the objects is at constant speed?
- B. Which of the objects is speeding up to the right?
- C. Which of the objects is slowing down to the right?
- D. Which of the objects have a positive acceleration?
- Which of the objects have zero acceleration? E.
- An object is moving at a constant velocity of 4 m/s and travels 120 m. 2.
 - A. Since the object is at constant velocity, does the object change speed?
 - B. What is the final velocity of the object?
 - C. What is the acceleration of the object?
 - D. Calculate the time it took for the object to go 120m.

- Use the position vs time graph at the right to answer the following. 3.
 - A. Which segment has the fastest velocity?
 - B. Which segment shows the object at rest?
 - C. Give the letters from slowest to fastest:
 - D. What is the object doing (use the information from the above answers)?

- Use the graph at the left to answer the following. 4. A. What is the initial velocity of the object?
 - What is the velocity of the object after 10 sec? B.
 - So the object is changing: С.
 - D. Calculate the slope of the line.
 - E. What is the acceleration of the object?
 - F. Graph this acceleration on the graph at the lower left.
 - For the object below: 5.

200	09 Linear Motion $1 - p 2$		m 1.	_	1m
6.	For the object at the right: $A \Delta x =$	— A	В	" C	"" D
	B. $\Delta y =$	1m	Ŭ		
7.	-(-8) =	—— E	F	G	Н
8.	A. An object is moving -10 m/s, then it accelerates for 3 seconds. Afterwards it is moving -40 m/s. Calculate the acceleration of the object. <u>Variables</u> : <u>Equation</u> : <u>Solve</u> :	1m I	J	к	L
		$\frac{1m}{M}$	N	0	Ρ

- B. So, is this object experiencing a positive or negative acceleration?
- 9. A. An object is moving -15 m/s. After 2 seconds it stops. Calculate its acceleration. <u>Variables</u>: <u>Equation</u>: <u>Solve</u>:
 - B. Is this object experiencing a positive or negative acceleration?

Meet Slim Jim, he's very slim. Jim is going to help us understand physics, this year.

- 10. Slim Jim drops a ball from 4 m up.
 - A. Jim is holding onto the ball to begin with, so what is its initial velocity?
 - B. Since the ball is DROPPED, what is Δy for the ball?
- 11. A rock is sitting on the edge of a 12 m tall cliff. It is then bumped off and falls to the ground below.
 A. Vi =

 - B. $\Delta y =$