2009 Linear Motion 1

Use your "Speed" notes and "Acceleration" notes to answer the following:

1. The dots at the right show the positions of four different objects each second.
(There can be more than one answer for each question).
A. Which of the objects is at constant speed?
B. Which of the objects is speeding up to the right?
C. Which of the objects is slowing down to the right?
D. Which of the objects have a positive acceleration?
E. Which of the objects have zero acceleration?
2. An object is moving at a constant velocity of $4 \mathrm{~m} / \mathrm{s}$ and travels 120 m .
a.

b.

A. Since the object is at constant velocity, does the object change speed?
B. What is the final velocity of the object?
C. What is the acceleration of the object?
D. Calculate the time it took for the object to go 120 m .
3. Use the position vs time graph at the right to answer the following.
A. Which segment has the fastest velocity?
B. Which segment shows the object at rest?
C. Give the letters from slowest to fastest:
D. What is the object doing (use the information from the above answers)?

4. Use the graph at the left to answer the following.
A. What is the initial velocity of the object?
B. What is the velocity of the object after 10 sec ?
C. So the object is changing:
D. Calculate the slope of the line.
E. What is the acceleration of the object?
F. Graph this acceleration on the graph at the lower left.
5. For the object below:
A. $\mathrm{Vi}=$
B. $\Delta x=$
C. $\Delta y=$

6. For the object at the right:

A. $\Delta x=$

1m

	E	F	G	H

8. A. An object is moving $-10 \mathrm{~m} / \mathrm{s}$, then it accelerates for 3 seconds. Afterwards it is moving $-40 \mathrm{~m} / \mathrm{s}$. Calculate the acceleration of the object. Variables:

Equation: Solve:

1m Start
$\square \quad N \quad O \quad P$
B. So, is this object experiencing a positive or negative acceleration?
9. A. An object is moving $-15 \mathrm{~m} / \mathrm{s}$. After 2 seconds it stops. Calculate its acceleration.
Variables: Equation: Solve:
B. Is this object experiencing a positive or negative acceleration?

Meet Slim Jim, he's very slim. Jim is going to help us understand physics, this year.
10. Slim Jim drops a ball from 4 m up.
A. Jim is holding onto the ball to begin with, so what is its initial velocity?
B. Since the ball is DROPPED, what is Δy for the ball?
11. A rock is sitting on the edge of a 12 m tall cliff. It is then bumped off and falls to the ground below.
A. $\mathrm{Vi}=$
B. $\Delta y=$

