A-Day: Due Tues., Sept 9 (Assigned: 9/5) B-Day: Due Wed., Sept 10 (Assigned: 9/8) 2008 Linear Motion 5

1	Α	Convert 2.4	m/s to	feet per	second
1.	11.	Convert 2.4	111/3 10	reet per	sccond.

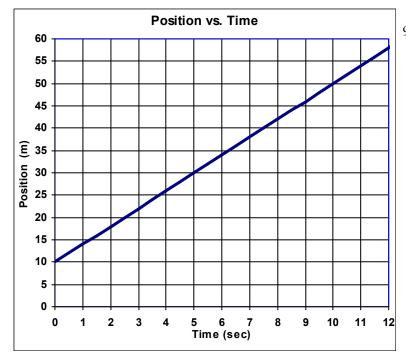
3.3 ft = 1 m 5280 ft = 1 mi 12 in = 1 ft I assume you know about seconds, mins, etc

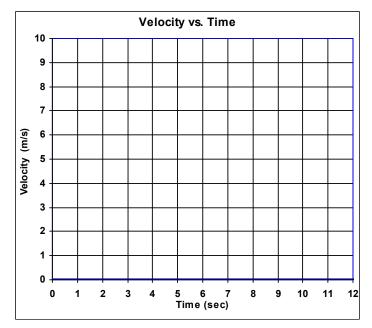
B. Now convert to feet/minute.

From your "Kinematic Equation" notes

- 2. A person swims 4 complete laps in a 30 m long pool. (30 m is one way. 1 complete lap is there and back.)
 - A. What distance did they travel?
 - B. What is their total displacement?

For each of the following situations give detailed descriptions including horizontal/vertical (x or y) and +/-.


- 3. A ball is thrown into the air. As it is going up
 - A. Displacement is:
 - B. Velocity is:
 - C. Acceleration is:
- 4. A ball is rolling to the right and slowing down.
 - A. Displacement is:
 - B. Velocity is:
 - C. Acceleration is:
- 5. A ball is rolling to the left and speeding up.
 - A. Displacement is:
 - B. Velocity is:
 - C. Acceleration is:
- 6. An object stops after moving 12 m/s to the right.
 - A. What is its initial velocity?
 - B. What is its final velocity?
 - C. Is its acceleration positive or negative?
 - D. Is its displacement positive or negative?
- 7. An object moves 50 m to the left after starting at rest. If it end up going 12 m/s to the left, how long did it take to stop? <u>Variables</u>: What's Variable is Missing? Solve:


What equation will you use?

- 8. A ball is dropped from 30 m. If its acceleration is -10 m/s², how fast is it going just before it hits the ground?
 - A. Is its displacement positive or negative?
 - B. What is its initial velocity?
 - C. Is its final velocity positive or negative (just before it hits the ground)?
 - D. Assign variables, choose an equation and solve.

<u>Variables</u>: What's Variable is Missing? Solve:

What equation will you use?

- Notes: "Graphing Linear Motion" and "Linear Equation"
- 9. Use the graph at the left to answer the following:
 - A. What is the initial position of the object?
 - B. In the linear equation, the initial position is what letter?
 - C. Find the slope of the graph.
 - D. What does the slope of this graph tell you?
 - E. Does the slope of the graph change, or is it a constant slope?
 - F. So, what is the speed of the object for the first 5 seconds?
 - G. What is the speed of the object for the last 5 seconds?
 - H. So, what is the speed of the object everywhere on the graph?
 - I. USING THE ABOVE INFORMATION graph the speed of the object on the second graph.
- 10. Write the kinematic equations on your equation sheet. BE SURE TO WRITE THEM EXACTLY, including parenthesis. Please note that I changed "a" is missing (etc) to no "a" due to space. No "t" means that "t" is not in your variable list. Also, write "kinematic equations" on the left like I did.

ons —	$\Delta x = \frac{1}{2} (v_i + v_f) t \text{no "a"}$
quati	$v_f = v_i + (at)$ no Δx
Kinematic Equations	$\Delta x = (v_i t) + \left(\frac{1}{2}a(t)^2\right) \text{ no } v_f$
-Kiner	$\Delta x = (v_f t) - \left(\frac{1}{2}a(t)^2\right) \text{ no } v_i$
	$v_f^2 = v_i^2 + (2a\Delta x) \text{no t}$