A-Day: Due Wed., Aug 27 (Assigned: 8/25) B-Day: Due Thurs., Aug 28 (Assigned: 8/26)

2008 Linear Motion 1

- 1) Have your Lab Safety and Class Rules sheet signed. (And actually bring it to class.)
- 2) Acquire a scientific calculator. It needs to have sin, cos, and tan. Preferably is should be solar. I like the TI-30. Purchase one or get one of the school's.
- 3) Why are closed-toed shoes required in the lab?
- 4) Give two reasons that we would need to wear goggles in a physics lab?
- 5) If someone has an idea for an experiment that you have never done before, should you do it? Why or why not?

Go to the website and answer the following:

6) List the songs that are on Mr. Murray's Website (found in "Study Helps").

- 7) Go to Study Helps, then Physics Study Helps, then Kinematic Equations. Do the first study help: "Kinematic Variables".
 - A) What are the units for acceleration?
 - B) What does Δy stand for?
 - C) What does v_i stand for?
- 8) Go to Teacher's Notes, Go to Nature of Science, then "How to Set Up a Good Experiment".
 - A) What do we call the variables we do not change in an experiment:
 - B) What do we call the variable we are reading in the experiment:
 - C) How many experimental variables does a good experiment have?

Answer the following using the "Speed" notes.

- 9) Mark these as Speed, Distance, Time, or Other
 - _____ 5 mm/sec _____ 20 meters/sec _____ 15 ft/min
 - 10 inches _____ 228 meters _____ 78 sec
 - 50 m/s^2 8 minutes 6 Newtons
- 10) True or false (and why): "A fast car goes farther."
- 11) Why do we have to use change of distance (ΔD) instead of just distance (D)?
- 12) Is the above motion at constant speed?
- 13) Why or why not?
- 14) Each dot = 1 sec. How long did it take to go 15 m?
- 15) Calculate the object's speed.

16) How would the dots change if it were moving faster?

More on back

For each of the next four problems, follow the procedure given.

18. A bike moves 50 m in 10 seconds. Calculate the speed of the bike.		19. A car travels 200 miles in 4 hours. Calculate the car's speed.		
Step 1: Variables: S = $\Delta D =$ $\Delta T =$	Step 3: Plug in numbers and solve:	Step 1: Variables: S = $\Delta D =$ $\Delta T =$	Step 3: Plug in numbers and solve:	
Step 2: Formula:	Step 4: Give answer with units:	Step 2: Formula:	Step 4: Give answer with units:	
20. A car travels 60 m/s for 10 secs. Calculate how far it traveled.		21.On holiday, a family travels from Meyerville (10 miles away) to Sprytown (70 miles away), in 3 hours. Find their speed.		
Step 1:	Step 3:	Step 1:	Step 3:	
Step 2:	Step 4:	Step 2:	Step 4:	

Let's see if we can't remind ourselves of things we have previously learned in math....

- 22. Positive or Negative?

 - A. _____ The horizontal axis pointing to the left?
 B. _____ The vertical axis pointing down?
 C. _____ The horizontal axis pointing to the right?
 - D. _____ The vertical axis pointing up?
- 23. Using the diagram at the right, calculate the speed of the car. (Be sure to follow the notes.)

0:03.0			0:00	0.0	
	Con	istant Speed			
) -		-		
	' ' ' ' 5m	10m	15m	20m	25n
`		1011	Tom	2011	201