

5. A person walks 4 m north, then 8 m south, then, totally confused, walks another 10 m north. Find their displacement. (If they started at the origin, where did they end up?) *Write each individual displacements, keeping track of* + *and* -, *then solve*.

- 6. Another confused person walks 15 m east, then 20 m west, then 2 m east. What is their displacement?
- 7. A third, VERY confused person walks 30 m west, then 10 m north, then 5 m south, then 40 m east, then another 6 m north.
 A) Find Δx.
 B) Find Δy.
 - C) Using the Pythagorean theorem, find their total displacement (use " $A^2 + B^2 = C^2$ " Δy and Δx are A and B [doesn't matter which], C is the magnitude of their total displacement, which is always positive).
 - D) Using $\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{y}{x}$, find their direction.
- 8. (As you did before.) A FOURTH **PHENOMENALLY** confused person walks 50 m north, 12 m east, 60 m west, 10 m south, and another 5 m south. Find the person's total displacement.

Try this on your own. See "Linear Motion 8" if you need more help.

- 9. An object is thrown horizontally from the top of a 22 m tall ledge.
 - A. How much of horizontal is vertical?
 - B. So, what is its initial y-velocity? $V_{yi} =$
 - C. What is its y-direction acceleration? $a_y =$
 - D. $\Delta y =$
 - E. Calculate the time to the ground.

F. $a_x = G$. Vx = H. tx = I. I. Calculate how far away it lands in the x-direction. Let me explain the grid. The non-arrow black lines are the x and y axis. The arrows represent motion (vectors). Each vector starts at the origin (0,0) and ends at the end of the arrow (the circle). (I assume you know which is the x and y axis and which directions are positive and negative.) To simplify things, let's make each square equal to I meter. When I ask for Δx or Δy I am asking for how far the object moves in the x direction and y direction from its start to its end. Since each arrow starts at the origin, the displacements are the x and y coordinates of the final position (since initial positions are 0,0). ALSO—Some displacements can be negative!!!!!

- 10. Which arrows have negative y coordinates?
- 11. Which arrows have negative x coordinates?
- 12. For Arrow B:
 - A) $\Delta x = _$; $\Delta y = _$.
 - B) Using Δx and Δy as A and B, find the total displacement of Arrow B (find "hypotenuse").
- 13. For Arrow A: (notice negatives)
 - A) $\Delta x = _; \Delta y = _$.
 - B) Find the total displacement of Arrow A.
- 14. Find the total displacement of Arrow C.
- 15. Find the total displacement of Arrow D.

- 16. A similar grid (where each square is 1 m) shows the motion of a person. They walk the direction and distance of I, then II, ending up at the circle.
 - A. For I: $\Delta x = ___ \Delta y = __$.
 - B. For II: $\Delta x = ___ \Delta y = __$.
 - C. Totals: $x_{total} = __y_{total} = __$
 - D. Draw a straight line arrow from the start to the finish.
 - E. Make a triangle from your arrow:
 - i. From the end of your arrow (the circle), draw a vertical line down.
 - ii. From the start of your arrow (the x), draw a horizontal line to the right that connects with your vertical line.
 - F. Using your x_{total} and y_{total} calculate the magnitude of your arrow.
 - G. Using tangent, calculate the direction of your arrow.