Due Thurs., Sept 23
Due Fri., Sept 24

1. Solve for the length of the hypotenuse and the angle.

2010-11 PreAP Two Dimensions 1

2. Calculate the x and y components of the 14 m arrow.

Don't out think the following questions. Notice the compass directions at the left if you are con-
3. Positive or Negative?
A. Walking east?
B. Walking north?
C. Walking south?
D. Walking west?
4. $\Delta \mathrm{x}$ or $\Delta \mathrm{y}$?
A. _ Walking east?
B. Walking north?
C. - Walking south?
D. -_ Walking west?
5. A person walks 4 m north, then 8 m south, then, totally confused, walks another 10 m north. Find their displacement. (If they started at the origin, where did they end up?) Write each individual displacements, keeping track of + and - , then solve.
6. Another confused person walks 15 m east, then 20 m west, then 2 m east. What is their displacement?
7. A third, VERY confused person walks 30 m west, then 10 m north, then 5 m south, then 40 m east, then another 6 m north.
A) Find Δx.
B) Find Δy.
C) Using the Pythagorean theorem, find their total displacement (use " $A^{2}+B^{2}=C^{2, "} \Delta y$ and Δx are A and B [doesn't matter which], C is the magnitude of their total displacement, which is always positive).
D) Using $\tan \theta=\mathrm{opp} / \mathrm{adj}=\mathrm{y} / \mathrm{x}$, find their direction.
8. (As you did before.) A FOURTH PHENOMENALLY confused person walks 50 m north, 12 m east, 60 m west, 10 m south, and another 5 m south. Find the person's total displacement.

Try this on your own. See "Linear Motion 8"if you need more help.
9. An object is thrown horizontally from the top of a 22 m tall ledge.
A. How much of horizontal is vertical?
B. So, what is its initial y-velocity? $\mathrm{V}_{\mathrm{yi}}=$
C. What is its y-direction acceleration? $a_{y}=$
D. $\Delta y=$
E. Calculate the time to the ground.
F. $a_{x}=$
G. $\mathrm{Vx}=$
H. $\mathrm{tx}=$
I. Calculate how far away it lands in the x -direction.

Let me explain the grid. The non-arrow black lines are the x and y axis. The arrows represent motion (vectors). Each vector starts at the origin (0,0) and ends at the end of the arrow (the circle). (I assume you know which is the x and y axis and which directions are positive and negative.) To simplify things, let's make each square equal to 1 meter. When I ask for Δx or Δy I am asking for how far the object moves in the x direction and y direction from its start to its end. Since each arrow starts at the origin, the displacements are the x and y coordinates of the final position (since initial positions are 0,0). ALSO—Some displacements can be negative!!!!!
10. Which arrows have negative y coordinates?
11. Which arrows have negative x coordinates?
12. For Arrow B:
A) $\Delta x=$ \qquad ; $\Delta y=$ \qquad .
B) Using Δx and Δy as A and B, find the total displacement of Arrow B (find "hypotenuse").
13. For Arrow A: (notice negatives)
A) $\Delta x=$ \qquad ; $\Delta y=$ \qquad .
B) Find the total displacement of Arrow A.
14. Find the total displacement of Arrow C.
15. Find the total displacement of Arrow D.
16. A similar grid (where each square is 1 m) shows the motion of a person. They walk the direction and distance of I, then II, ending up at the circle.
A. For I: $\Delta x=$ \qquad $\Delta y=$ \qquad .
B. For II: $\Delta \mathrm{x}=$ \qquad $\Delta y=$ \qquad -
C. Totals: $\mathrm{x}_{\text {total }}=$ \qquad $y_{\text {total }}=$ \qquad .
D. Draw a straight line arrow from the start to the finish.
E. Make a triangle from your arrow:
i. From the end of your arrow (the circle), draw a vertical line down.
ii. From the start of your arrow (the x), draw a horizontal line to the right that connects with your vertical line.
F. Using your $\mathrm{x}_{\text {total }}$ and $\mathrm{y}_{\text {total }}$ calculate the magnitude of your arrow.
G. Using tangent, calculate the direction of your arrow.

