PreAP Two Dimensions 5

When you add vectors: 1) set up the vector with the angle starting at the +x axis; 2) calculate each x-component using Hsin θ ; 4) total up the x's and y's, remembering to keep track of +s and -s; 5) using x_{total} and y_{total} calculate the resultant's hypotenuse with Pythagorean Theorem and its angle with inverse tangent. When do we use this process? ALWAYS! ALWAYS! Do I make myself clear?

1.	All of these vectors are given with correct angles already,
	you do not need to change the angles

уоt А.	Calculate the x and y components of the	X component		Y-component
	given vectors. DO NOT DRAW THEM— do this with your calculator only.	Vector 1: 250m at 35°		
		Vector 2: 85m at 256°		
B.	Add together all of your x-components to find x-total.	Vector 3: 424m at 346°		
C.	Add together all of your y-components to find y-total.	Vector 4: 34 m at 90°		
		Totals:		
D.	Use Pythagorean theorem to find the magnitude (size) of the resultant.	Resultant: Magnitude =	Direction =	
Б	Use inverse tengent to find the			

E. Use inverse tangent to find the direction of the resultant.

Remember that the negative of a vector means turn the vector around (or put the arrow on the opposite end of the vector). So, the negative direction of 30° is $30^{\circ} + 180^{\circ} = 210^{\circ}$.

- 2. Given these vectors: $A = 425 \text{ m at } 75^\circ$; $B = 68 \text{ m at } 130^\circ$; $C = 91 \text{ m at } -319^\circ$; $D = 213 \text{ m at } 234^\circ$.
 - Using the same procedure as above, add together these vectors: A 3B + 2C + D.
 - A. Calculate each of the vectors: A, -3B, etc. and write them below.
 - B. Then do the table above with each.

- 3. An object is thrown 70 m/s at 50°, from the ground to the ground.
 - A. Calculate Vy and Vx.
 - B. Fill in the variables on the chart.
 - C. Calculate how far away the object lands.

4. An object is shot horizontally from a 24 m cliff going 65 m/s. How far away does it land?

- 5. A person jumps from the top of a house onto a ground level trampoline. They rebound off of the trampoline going 12 m/s at an angle of 52°. (*Draw the diagram and write out the variables.*)
 - A. Calculate the person's
 - "hang time"
 - B. How far away do the land from the trampoline?

- 10. Here are the things that we know about projectile motion ALWAYS: (some will be with variables only)
 A. a_y always =
 B. a_x always =
 - C. If given V and θ , Vy_i always = D. Vx_i always =
 - D. If shot from the ground to the ground $\Delta y = E$. The x equation always =
- cstephenmurray.com

Let me show you how you can solve harder problems with this process.

- 11. A projectile is shot from the ground to the ground. It is in the air for 3.5 seconds and travels 54 meters.
 - A. Assign any variable you know AND write the equation you know you are going to use in the x-direction.
 - B. Using what you learned in Q5, write Vi and Vf in the y-direction using variables.
 - C. Solve for the initial velocity and direction of the object.

