2010-11 PreAP Linear Motion 8

1. A. What direction will you use for the 18 m displacement?
B. Calculate its x and y components.

2. Calculate the length of the non-dashed arrow.
3. Transfer the graph at the left. Assume each square is 1 m by 1 sec .
Position vs. Time

Time

Acceleration vs. Time

Time

4. An object is thrown $8 \mathrm{~m} / \mathrm{s}$ from the top of a 7 m tall ledge. Let me talk you thru this. In the y-direction, since it moving exactly horizontal its initial yvelocity is $0 \mathrm{~m} / \mathrm{s} \quad\left(V y_{i}=0 \mathrm{~m} / \mathrm{s}\right)$.
A. what is its initial vertical velocity? $V y_{i}=$
B. What is its change of vertical position? $\Delta y=$
C. What is its acceleration in the y-direction? $a_{y}=$
D. Solve for the time it takes to drop to the ground.

In the x-direction the acceleration is $0 \mathrm{~m} / \mathrm{s}^{2} . a_{x}=0 \mathrm{~m} / \mathrm{s}^{2}$.
E. Since it hits the ground in both the x and y directions at the same timeF $t_{y}=t_{x}$. So, for how much time is the ball in the air (see D)?

Since it has no acceleration you can just use $S=D / T$.
F. Calculate how far it travels in the x -direction.
5. A car going $45 \mathrm{~m} / \mathrm{s}$ stops in 8 seconds. Calculate its acceleration.

Variables: Equation: Solve:

Use your "Freefall" notes for the next two problems.
6. An object is thrown into the air going $15 \mathrm{~m} / \mathrm{s}$. You want to know how high up it goes.
A. Is its displacement going to be + or - ?
B. What will be its final velocity at the very top?
C. How high does it go?
7. An object is thrown $12 \mathrm{~m} / \mathrm{s}$ into the air from the ground. If it lands back on the ground, calculate the time it was in the air.

See the "Integration" notes on the website.
8. A. Break up the graph into 3 "areas": $0-8 \mathrm{sec} ; 8-12 \mathrm{sec} ; 12-14 \mathrm{sec}$; 14-20 sec.
B. For the first 8 seconds, calculate the area of the graph from the x -axis to the line (it will be negative).
C. What is the displacement of the object for the first 8 seconds?
D. For the time $8-12$ seconds, calculate the area from the x-axis to the line (it will also be negative).
E. What is the TOTAL displacement for the first 12 seconds?
F. Calculate the displacements for $12-14 \mathrm{sec}$.
G. Calculate the displacements for $14-20 \mathrm{sec}$.
H. What is the total displacement for the whole graph (add 'em)?
I. Make position and acceleration graphs below.

Review:

9. How many sig figs?
A. 3050 meters
B. 0.002500 seconds
C. 6.02×10^{-2} meters
D. $402000.00 \mathrm{~m} / \mathrm{s}$
E. 5.030 seconds
F. $\quad 9.8 \mathrm{~m} / \mathrm{s}^{2}$
10. Do the following math operations, giving your answers with the correct number of sig figs.
I. $B+E$
IV. $\mathrm{A} \times \mathrm{C}$
II. $\mathrm{F} \times \mathrm{B}$
V. $\mathrm{C} \div \mathrm{B}$
III. $\mathrm{A}+\mathrm{E}$.
11. Three lengths end up equaling 1.25 m . Length $\mathrm{I}=1.203 \times 10^{2} \mathrm{~mm}$; Length $\mathrm{II}=56.28 \mathrm{~cm}$.
A. Convert all of them to meters and take them out of sci notation (so you can compare decimal).

Length $\mathrm{I}=$ \qquad ; Length II = \qquad ; Total = \qquad
C. Calculate the third length. Give your answers with the correct \# of sig figs.

