A-day: Due Tues., Sept 7
B-day: Due Wed., Sept 8

2010-11 PreAP Linear Motion 5

1. What is the correct direction for the 22 m arrow shown at the left?
2. Use the 20 m long arrow to answer the following. We will start by drawing a vertical line from the tip of the arrow to the x -axis to create a right triangle. Find the x and y components of the 20 m long arrow.
3. An object accelerates at $6 \mathrm{~m} / \mathrm{s}^{2}$ for 3 seconds. During this time it travels 40 m to the right.
A. Since the object moves to the right is the displacement + or - ?
B. Solve for the initial velocity of the object. (Use the kinematic equations. Show variables and equation.) Variables:

Equation:
Solve:
4. A. Is the car at the right moving left or right?
B. Is this the + or -x direction?
C. What is the $\Delta \mathrm{D}$ for the object?
D. What is the ΔT ?
E. What is the speed of the object?

5. Assuming right is positive, which line segment or line segments...
A. Shows the fastest speed?
B. Shows an object moving to the right?
C. Shows an object moving to the left?
D. Shows an object at rest?
E. Shows positive velocity?
F. Shows negative velocity?

From the "Acceleration" Notes:
6. What are the two ways you know an object is accelerating?
7. How can an object not change speed, but be accelerating?

The symbol " Δ " is delta and means "change of". Δ always equals final - initial. $S o, \Delta x=x_{f}-x_{i}$ and $\Delta v=v_{f}-v_{i}$. Also, remember that left is negative and right is positive for velocity and position.
8. An object is moving $30 \mathrm{~m} / \mathrm{s}$ to the right. After 5 seconds it is moving $10 \mathrm{~m} / \mathrm{s}$ to the left. Find the acceleration of the object. Variables:

Equation:
Solve:
9. An object is moving $45 \mathrm{~m} / \mathrm{s}$ to the left. After 7 seconds it is moving at only $10 \mathrm{~m} / \mathrm{s}$ to the left. Find acceleration. Variables: Equation: Solve:
10.,+- , or 0 ?
A. ___ Velocity when moving to the right.
B. ___ Acceleration if moving left and slowing down
C. ___ Acceleration if moving to the right an speeding up.
D. \qquad Velocity if moving to the left.
(see Q9).
E. Acceleration if the speed doesn't change.
F. Velocity if the position doesn't change.
G. Horizontal position if to the right of the origin.
$\vec{V}_{\text {ave }}=\frac{\Delta x}{\Delta t} \longleftarrow$ not distance ,

$$
S_{\text {ave }}=\frac{D_{\text {total }}}{t_{\text {total }}} \quad S=\frac{\Delta D}{\Delta t} \quad \begin{aligned}
& \text { Instantaneous speed is at a particular moment } . \\
& \text { Your speedometer shows instantaneous speed. }
\end{aligned}
$$

11. An object moves 24 m to the right in 6 seconds and then 10 m to the left in 2 seconds.
A. What is the total distance traveled?
B. Calculate the average speed of the object.
C. What is the total displacement of the object?
D. Calculate the average velocity of the object.
E. What is the instantaneous speed 3 seconds into the journey?

12. Imagine you have a half of a pie and a fourth of a pie.
A. How much pie do you have, total?
B. Now, show the math: $\frac{1}{2}+\frac{1}{4}=$
13. Do it with variables: $\frac{1}{r}+\frac{1}{t}=$
14. Transfer the position vs. time graph to the velocity and acceleration graphs below.

15. Finish your first graph of the data that was given on the last homework.
A. Use the "Common Graphing Mistakes" notes to ensure you don't lose points for silly mistakes.
B. Tell me what function it is/
C. Straighten the graph on the back of the graph paper (new graph).
D. Calculate the slope of the straightened graph.
