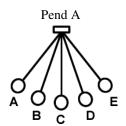
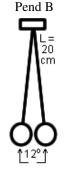
2009 PreAP Thermo 3


Second Law of Thermodynamics (Entropy):


- Clausius statement: heat can flow spontaneously from a hot object to a cold object; heat will not flow spontaneously from a cold object to a hot object.
- Clausius statement (formal): no device is possible whose sole effect is to transfer heat from one system at a temperature T_L into a second system at a higher temperature T_H.
- General Statement: The total entropy of any system plus that of its environment increases as a result of any natural process.
- **General Statement:** Natural processes tend to move toward a state of greater disorder.

•	General Statement: In any natural process, some energy becomes unavailable to do useful work.
1.	Q_H , Q_C , W or ΔU ?
	AHeat removed by the coils outside of a refrigerator.
	BWhen the refrigerant passes thru the expansion valve of a refrigerator.
	CHeat absorbed by the refrigerant inside the refrigerator.
	DChanges inside the compressor of a refrigerator.
	1500 J of energy is added at the boiler of a heat engine. 600 J is lost when the steam is cooled.
	900 J of energy is produced by the engine.
	E1500 J
	F600 J
	G900 J
	HIs 0 for a cyclic process.
2.	Adiabatic, isovolumetric, or isothermal?
۷.	
	AIn the compressor of a refrigerator.
	BIn the boiler of a heat engine.
	CIn the piston of a heat engine.DWhen heat is absorbed by the refrigerant while inside the refrigerator.
	EWhen heat is dissipated in the coils at the back of the refrigerator.
	FSteam is cooled after the piston of a heat engine.
	GSteam is cooled after the piston of a fleat engine. GAt the expansion valve of a refrigerator.
	OAt the expansion valve of a terrigerator.
3.	+, -, or 0?
	AQ for the refrigerant inside the refrigerator compartment.
	BW by the gas at the refrigerator's expansion valve.
	CQ for the refrigerant when outside the refrigerator compartment.
	D. $_\\Delta U$ for the refrigerant during one entire cycle.
	EW by the gas in a heat engine's piston.
	F. ΔU for any cyclic process.
	GQ in the boiler of a heat engine.
	HW for the refrigerant inside the refrigerator compartment.
	IQ in the radiator of a steam engine (after the piston).
4.	Write the First Law of Thermodynamics for the compressor stage of a refrigerator. Be exact as for +'s or -'s
5.	A heat engine does 55 J of work each cycle and expels 29 J of heat in the radiator.
٥.	A. How much heat is gained at the boiler?
	220 Anders are to gained at the conter.
	B. How efficient is the engine?

- 5.
- 6. A heat engine has an efficiency of 84%. If 3500J of work is done by the engine, how much heat is lost in the cycle?

7. Explain why a heat engine MUST lose heat in the cooling part of the engine. Be specific. What is entropy? Which has more entropy a solid or a gas? 10. A. Which has more entropy a ball falling thru the air, or the ball when it hits the ground. B. Explain. 11. Equation for entropy: S = Q/T. A. In which case will more entropy be changed: if 250 J of energy is gained by a solid or by a gas? B. Explain. 12. Give two ways to decrease the entropy of something. Turn to the chapter 12. 13. What is periodic motion? 14. Use the mass-spring example in figure 12-1 to answer the following. Give position a, b, or c. A. $_{---}v = 0$. E. ____F of the spring = 0. B. ____Ek is at a maximum. F. ____a is a minimum. C. ____x is at a minimum. G. ____Equilibrium position. D. _____Maximum potential energy. 15. Where will the mass-spring system come to rest? 16. What is damping? 17. As x increases for a spring, F: 18. Why is there a negative in Hooke's Law? 19. What is the spring constant? Give units and physical property that exhibits the spring constant. 20. Do Q 3 and 4 on p. 441.

- 21. P. 443—What is a bob?22. What provides the restoring
- 22. What provides the restoring force for a pendulum, exactly?
- 23. Is a pendulum simple harmonic motion?
- 24. Where is the potential energy of a pendulum defined to be zero?
- 25. How does the total mechanical energy for a pendulum change during its cycle?
- 26. For pendulum A, if it takes 0.5 seconds from letter A to C, how long is one cycle?
- 27. For pendulum A, if the cycle starts at point C going right, when does the cycle end?
- 28. What is the amplitude and period of pendulum B?