From "Heat":

17. How much energy is need to raise 50 kg of water from $45^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$?

$$
\begin{aligned}
Q & =m C_{p} A T \\
& =50(4186)(80-45) \\
& =50(4186)(35)=7.3 \times 10^{6} \mathrm{~J}
\end{aligned}
$$

From "Latent Heat":

15.How much heat is released when 35 kg of water freezes?

$$
\begin{aligned}
Q=m L_{f} & =35\left(-3.33 \times 10^{5}\right) \\
& =-1.16 \times 10^{7 \mathrm{~J}}
\end{aligned}
$$

17.10 kg of steam at $110^{\circ} \mathrm{C}$ is cooled to water at $80^{\circ} \mathrm{C}$.
A. Write Ti and Tf for this situation on the diagram below.
B. Find $\Delta \mathrm{T}$ for each temperature change.
C. Calculate the individual Q 's and add them to find $\mathrm{Q}_{\text {total }}$.

$\begin{aligned} & T_{i}= \\ & 110^{\circ} \end{aligned}$	篤	$\begin{aligned} \mathrm{Q}=\mathrm{mc}_{\mathrm{pstam}} \Delta \mathrm{~T} & =10(2010)(-10) \\ \Delta T=-10^{\circ} & =-2.0) \times 10^{5} \mathrm{~J} \end{aligned}$	
$100^{\circ} \mathrm{C}$		$\mathrm{Q}=\mathrm{mL}_{\mathrm{v}}=10(-2.26 \mathrm{E} 6)=-2.26$	
$100^{\circ} \mathrm{C}$		$\begin{aligned} & \begin{array}{l} \mathrm{Q}=\mathrm{mc}_{\mathrm{pwata}} \Delta \mathrm{~T}=10 \\ \Delta \mathrm{C} \\ \Delta \mathrm{~T}=-20^{\circ} \quad \\ \hline 8.37 \times 10^{5} \mathrm{~J} \end{array}= \end{aligned}$	
$T_{F}=$	范		
$0^{\circ} \mathrm{C}$		$\begin{array}{cc} Q=m L_{f} \quad \text { total }= \\ & -2.36 \times 10^{7} \mathrm{~J} \end{array}$	
$0^{\circ} \mathrm{C}$	\%	$\mathrm{Q}=\mathrm{mc}_{\text {pice }} \Delta \mathrm{T}$	

