2009-10 PreAP Thermo 3

- 1. $Q_H, Q_C, W \text{ or } \Delta U$? (Use the diagrams on the notes.)
 - A. _____Heat removed by the coils outside of a refrigerator.
 - B. _____When the refrigerant passes thru the expansion valve of a refrigerator.
 - C. _____Heat absorbed by the refrigerant inside the refrigerator.
 - D. Changes inside the compressor of a refrigerator.
 1500 J of energy is added at the boiler of a heat engine. 600 J is lost when the steam is cooled.
 900 J of useful energy is produced by the engine.
 - E. _____1500 J
 - F. _____600 J
 - G. 900 J
 - H. _____Is 0 for a cyclic process.
- 2. Adiabatic, isovolumetric, or isothermal?
 - A. ____In the compressor of a refrigerator.
 - B. ____In the boiler of a heat engine.
 - C. _____In the piston of a heat engine.
 - D. _____When heat is absorbed by the refrigerant while inside the refrigerator.
 - E. _____When heat is dissipated in the coils at the back of the refrigerator.
 - F. _____Steam is cooled after the piston of a heat engine.
 - G. _____At the expansion valve of a refrigerator.
- 3. +, -, or 0?
 - A. _____Q for the refrigerant inside the refrigerator compartment.
 - B. _____W by the gas at the refrigerator's expansion valve.
 - C. _____Q for the refrigerant when outside the refrigerator compartment.
 - D. $__\Delta U$ for the refrigerant during one entire cycle.
 - E. _____W by the gas in a heat engine's piston.
 - F. ΔU for any cyclic process.
 - G. _____Q in the boiler of a heat engine.
 - H. _____W for the refrigerant inside the refrigerator compartment.
 - I. ____Q in the radiator of a steam engine (after the piston).
- 4. A heat engine does 55 J of work each cycle and expels 29 J of heat in the radiator. A. How much heat was added at the boiler?
 - B. How efficient is the engine?

NOTE: "by the gas" is the same as "by the system".

- 5. A heat engine has an efficiency of 84%. If 3500J of work is done by the engine, how much heat is lost in the cycle?
- 6. A refrigerator expels 3.5 kJ per cycle. If the compressor does 2.0 kJ each cycle, how much heat is removed from inside the refrigerator each cycle?
- 7. Consider the compressor stage of a refrigerator.
 - A. What kind of thermodynamic process is it?
 - B. Write the First Law of Thermodynamics, being exact as for +'s or -'s.
- 8. The air conditioner pulls 900 J each second (otherwise known as _____) from the passenger cabin. If 1700 W of heat is exhausted to the outside, how much work is done by the compressor?

2011 PreAP Thermo 3—p2

- 9. An engine gains 2.56×10^7 J of energy from combustion. If the engine expels 1.15×10^7 J, how efficient is the engine?
- 10. If a refrigerator is left open in the middle of a room, does the room's overall temperature increase or decrease over time? (*And defend your answer, of course.*)
- 11. If heat only travels from hot to cold, how can a refrigerator move heat from the cold interior of the refrigerator to the hotter exterior?
- 12. Why does there need to be radiator in a heat engine's cycle?

From the "Thermodynamic Processes" notes: 13. Fill in the following table. (Try to do this from memory, first.)

Process	What equals zero	First Law of Thermodynamics
isovolumetric		
isothermal		
adiabatic		

More Notes:

Second Law of Thermodynamics (Entropy):

- **Clausius statement**: heat can flow spontaneously from a hot object to a cold object; heat will not flow spontaneously from a cold object to a hot object.
- Clausius statement (formal): no device is possible whose sole effect is to transfer heat from one system at a temperature T_L into a second system at a higher temperature T_H.
- General Statement: The total entropy of any system plus that of its environment increases as a result of any natural process.
- General Statement: Natural processes tend to move toward a state of greater disorder.
- General Statement: In any natural process, some energy becomes unavailable to do useful work.

14. In any natural process:

- A. The energy of the universe: increases; decreases; stays the same.
- B. The entropy of the universe: increases; decreases; stays the same.
- 15. Which has more positional entropy: a solid or a liquid?
- 16. A. Which has more entropy a ball falling thru the air, or the ball after it has hit the ground.B. Explain.
- 17. Imagine a closed system.
 - A. If it is closed, can there be any outside work?
 - B. The entropy of the system: increases; decreases; stays the same.