Name: _____

Period: _____

PreAP Energy Notes -

Ер	Due to height ONLY (path doesn't matter. Only the final position.) conservative (path doesn't matter). mg (weight) = Force, so F_w times $h = E_p$. Must be relative to a point (Can be negative) h is always vertical Doubling m doubles Ep (since m is not squared); doubling h doubles Ep. Graphing (E_p vs m is linear; E_p vs h is also linear).
W	Force times distance. Only the component of F parallel to the motion does work (use cos). $W = \Delta E$. Friction always removes energy so friction = -W. F could = mg, when lifting an object. Either F = mg OR W = E _p No work done if object doesn't move. Units = joules. [in simplier units = Fd = mad = kg(m/s ²)m = kgm ² /s ²] Graphed (area under F vs D graph = work done. Can be negative area.)
E _k	Energy of motion. Doesn't matter if it is above the ground or not. Can have other kinds of energy at the same time. Double m, E_k doubles; Double v, E_k quadruples. Always positive (since v is squared). Graphed (E_k vs m is linear; E_k vs v is quadratic [an upward parabola])
PEel	k is spring constant – k is bigger for stronger spring Units are N/m or how many Newton's it takes to stretch it a meter. X is distance from equilibrium position (rest position) Always positive (since x is squared) Double k, doubles PE; Doubling x, quadruples PE. Graphed (PE _{el} el vs k is linear; PE _{el} vs x is quadratic [an upward parabola])
Р	 rate of doing work or giving energy (how FAST you do work or change energy) Slope of W vs. time graph is power. P = W/t OR P = Fd/t OR P = ΔE/t. You don't have to know the work to find P. You could know the amount of energy you gave the object. Units = watts. (Like joules, it can be expressed as simpler units.) Since P = Fd/t and v = d/t, P can also = Fv, if pushed at constant velocity.
Conserv	vation of Energy – If no work is done, the total amount of mechanical E remains constant. If there is we increases (+W) or decreases (-W [lost, like friction]). Pendulums and roller coaster are good example

- Conservation of Energy If no work is done, the total amount of mechanical E remains constant. If there is work then E_{total} increases (+W) or decreases (–W [lost, like friction]). Pendulums and roller coaster are good examples of systems where E_p turns to E_k and back. In the absence of friction, E_{total} doesn't change. If there is friction, then E_{total} decreases over time.
- Mechanical Energy any kind of E_p or E_k . Mechanical energy is organized energy (as opposed to thermal energy which is random) and easy to utilize easy to transfer to another kind. Energy is always conserved, but mechanical energy can be lost to thermal energy.