

1. Calculate the acceleration of the 5 kg object.

So we see that instead of F = ma, we must use $\sum F = ma$, where $\sum F$ means $F_1 + F_2 + F_3$... etc., keeping track of +s and -s.

- 3. Now two forces pull on the 5 kg mass, but at the directions given.
 - A. Which force will the resultant be closer to?

2010-11 PreAP Forces 3

- B. Which components will add together: x or y's?
- C. Which components will subtract from each other: x or y's?D. Calculate the net force on the object, using what you learned about vectors
- last chapter.
- E. Then calculate the acceleration of the object (*magnitude and direction*, *of course*).

4. A 25 kg object is moving 12 m/s to the left. It has an acceleration of 2 m/s² to the right.

When an elevator starts down?

When an elevator is stopping while moving down?

- A. Is the object speeding up or slowing down?
- B. Is the acceleration positive or negative?

D

E.

- C. Which force must be bigger?
- D. Use ΣF = ma to calculate F_2 .
- 5. Heavier, lighter, or same as normal weight?
 - A. _____ When an elevator starts moving up?
 - B. _____ When an elevator is between floors?
 - C. _____ When an elevator is stopping while moving up?

- A 65 kg person is in an elevator. The elevator has an accelerates of +3 m/s².
 A. How heavy do they seem? (See "Normal Force" notes)
 - B. Is the elevator moving up or down?
 - C. How heavy do they seem if the elevator has an acceleration of -4 m/s^2 .
- 7. Bim is pulling on a mass at constant speed. There is friction on the floor.
 - A. Draw all of the forces acting on the object.
 - B. What is the acceleration of the object.
 - C. Use $\sum F$ = ma to calculate the force of friction.

30 N

2. Slim Jim is pulling on an object and Bim tries to "help". Calculate the acceleration of the object (*pretend Jim is pull-ing parallel to the floor*).

Copyright © 2010, C. Stephen Murray

PreAP Forces 3-p2

 $\mu_{\rm s} = 0.2$

 $\mu_k = 0.15$

- 8. * A 45 N force pulls on a 15 kg object an angle of 48°. The coefficients of friction are given.
 - Break up the 45 N force into its x and y components (draw and label it on A. the diagram).
 - Calculate the normal force on the object. В.
 - С. Calculate static and kinetic friction on the object.
 - Will the object slide? D.
 - If the object doesn't slide, how much more force is necessary to E. get it to slide?
 - F. If it does slide, calculate its acceleration.
- 9. This time, the 45 N force pushes DOWN on the object.
 - Since the force is pushing down, will the normal force be greater or less А. than the force of weight of the object?
 - B. Calculate the frictional forces on the object.
 - C. Decide if the object will slide or not.
 - Calculate its acceleration OR how much more force is necessary to start it sliding. D.

45 N

48°

8 kg

Falling in a vacuum, so

Т

Fw

♦F_w

 M_8

Looking down on an object

that is sliding on ice.

- there is no air friction.
 - 10. * Identify the force diagrams for the nine above masses.
 - 11. * For the left-most mass in the second row, write the x and y second law equations.
 - 12. Write the x and y second law equations for the left most mass in the third row.

 F_{W} FN Fw

Т T 🌢

cstephenmurray.com

Sometimes we tilt our x and y-axis to make our job easier. Study the diagrams above carefully.

- 13. For ramps:
 - A. To calculate the portion of the weight pulling down the ramp do we use sin or cos?
 - B. The weight always points which way?
 - C. The normal force is equal and opposite to which portion of the weight: sin or cos?
 - D. Which way will friction point? Up or down the ramp?
- 14. Using the example at the bottom right to fill in the blanks on the diagram below. (NOTE: The numbers are different. Don't just copy the numbers from the right diagram to the left diagram.)

- * A 45 N force pulls on a 15 kg object an angle of 48°. The coefficients of friction are given.
 - A. Break up the 45 N force into its x and y components (draw and label it on the diagram).
 - B. Calculate the normal force on the object. 13.56 N
 - Calculate static and kinetic friction on the object. $F_5 = 27.7 \text{ N} \quad F_{k} = 11.4 \text{ N}$ C.

 - D. Will the object slide? $\mathcal{YCS}_{\mathcal{I}}$ 30. || > 22.7E. If the object doesn't slide, how much more force is necessary to get it to slide? N/2
 - F. If it does slide, calculate its acceleration.

Q11: x-dir: T = ma (only the horizontal forces) y-dir: $F_N + F - F_W = ma$ (only the vertical forces)