B-Day: Due Tues., Oct 26 A-Day: Due Wed., Oct 27

There is no friction

N

 M_2

 M_3

 M_4

N

M₁

 m_5

 m_6

 $v_i = 0 m/s$

12 kg

 m_7

2010-11 PreAP Forces 2

Four masses are connected by ropes.
A. Since they are not on the table, which force cannot be acting on m₃ and m₄?

B. Below are the force diagrams for each of the mass. Label them correctly.

2. Use the three diagrams at the left to answer the following.

after

A. ____Which could be at rest?

B. ____Acceleration is negative.

C. Acceleration is positive.

D. _____Has a net force of 0 N.

F. _____Has balanced forces.

before

 \bigcirc hall

 $v_2 = ? m/s$

12 kg

E. Has a net force (Fnet $\neq 0$)

 $v_3 = ? m/s$

12 kg

- G. ____ Could be changing direction.
- H. _____ Has unbalanced forces.
- I. ____ V could = 0 m/s.
- J. ____ Could be a constant speed.
- K. ____ Could be slowing down to the left.
- L. ____ Could be slowing down to the right.
- 3. A force pushes the cart to the right. Draw where the ball ends up.
- Slim Jim pushes on a 12 kg object for 10 seconds. It moves 8 m to the right while he is pushing it.
 - A. * Below the picture use the kinematic equations to calculate the acceleration of the mass.
 - B. Now, use F = ma to calculate the magnitude of Slim Jim's force.
 - C. If the surface is frictionless, how does v_3 compare to v_2 ?
 - D. If the surface has friction, how does v_3 compare to v_2 ?

There are two major categories of forces: contact forces (when touching occurs) and field forces (forces at a distance). Contact or Field force?

A.	Tension	C	Can cause accelerations	E.	Electrostatic force
B.	Normal force	D	Gravity		(like a balloon rubbed on hair)

Why this matters: Newton's Third Law: "For every force there is an equal and opposite force." But this opposite force must be of the same type: contact forces oppose contact forces; field forces oppose field forces.

6. A box is sitting on a table.

8 m

- A. What force opposes the normal force pushing up on the box?B. What force opposes the force of weight pulling down on the box?
- .

5.

PreAP Forces 2—p2

A 500 g object is attached to a spring scale by a string. The mass is given three different accelerations. Use $g = 10 \text{ m/s}^2$

Big Hint: 1000g = 1 kg (work in kilograms)

B. Does the scale read more, less, or the same as the weight of the object?

500

 0 m/s^2

- 8. A. Calculate the tension in the string if the $a = 4 \text{ m/s}^2$.
 - B. Does the scale read more, less, or the same as the weight of the object?

- 9. A. Calculate the tension in the string if the $a = 4 \text{ m/s}^2$.
 - B. Does the scale read more, less, or the same as the weight of the object?

10. *An 8 kg object is pulled by a 10 N force while a 5 N force pushes down on it. Friction is trying to oppose the 10 N force.

- A. Calculate and label the weight and normal force. (Use $g = 10 \text{ m/s}^2$.)
- B. How much force tries to keep the object from sliding?
- C. How much force tries to stop the object from sliding (if already moving)?
- D. Is the 10 N force strong enough to move the object?
- E. How much more force is necessary for it to break free?
- F. If the object is already sliding, calculate the acceleration of the object.
- G. If $F_s = \mu_s F_N$ and $F_k = \mu_k F_N$, calculate the coefficients of friction for this surface (μ_s and μ_k).
- 11. Use the diagram at the left to answer the following.
 - A. Calculate and label the weight and normal force. (Use $g = 10 \text{ m/s}^2$.)
 - B. How much force tries to keep the object from sliding?
 - C. How much force tries to stop the object from sliding (if already moving)?
 - D. Is the 20 N force strong enough to move the object?
 - E. If the object doesn't slide, how much more force is necessary for it to break free?
 - F. If the object does slide, calculate the acceleration of the object.
 - G. Calculate the coefficients of friction for this surface.

- Q4A: You have v_i , t, and x, so $a = 0.16 \text{ m/s}^2$
- Q7: First, convert to kilograms: m = 0.5 kg Then F = ma. Put in the forces, mass, and acceleration: T - mg = ma; T - (0.5)10 = (0.5)0; T - 5 = 0; T = 5 N, which is the same as the weight because the acceleration is zero.
- Q10: A. mg = 80 N; $F_N = 80 + 5 = 85$ N; Normal force is increased when an additional force pushes down.
 - B. 12 N (static friction tries to keep an object from sliding)
 - C. 3 N (kinetic friction only occurs when the object is already sliding)
 - D. No, 12 > 10.
 - E. You can figure this out.
 - F. F = ma and since it is sliding you have to use kinetic friction. $10 - 3 - 8a; \quad 7 - 8a; \quad a = 7/8 - 0.875 \text{ m/s}^2$
 - 10 3 = 8a; 7 = 8a; $a = 7/8 = 0.875 \text{ m/s}^2$
 - G. $F_s = \mu_s F_N$ So, $\mu_s = F_s/F_N = 12N/85N = .14$ (no units, since units cancel)
 - $F_k = \mu_k F_N$ So, $\mu_k = F_k / F_N = 3N/85N = .035$