

$T = m(v^{2}/r)$ (v ² /r) is centripetal accel Don't use mg, since x and y are independent	y: T – mg = ma
y: x: T - mg = ma none a = 0, so T = mg	y: x: $F_N - mg = ma$ $F_{Bim} - F_{Jim} = ma$ a = 0, so T = mg
y: x: $F_N - mg + Tsin\theta = 0$ $Tcos\theta - F_k = ma$ So, $F_N = mg - Tsin\theta$	y: T - mg = ma a = 0, so T = mg
x: y: $T = ma$ $F_N - mg = ma$ a = neg $a = 0$, so $F_N = mg$	x: T = ma a = pos $F_N - mg = ma$ a = 0, so $F_N = mg$
elevator: Person: $T - mg = ma$ $F_N - mg = ma$ a = +, so $F_N = mg + ma$	$F_f = m(v^2/r)$ and, since gripping: $F_s = m(v^2/r)$ (v^2/r) is centripetal accel

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} Y^{:} \\ F_{N} = m(v^{2}/r) \\ (v^{2}/r) \text{ is centripetal acc.,} \\ \text{ so means in a circle.} \end{array} \end{array} \begin{array}{c} \begin{array}{c} Y^{:} \\ T - mg = ma \\ \text{ Constant speed: } a = 0, \text{ so} \\ T = mg \end{array} \end{array}$$

$$\begin{array}{c} \begin{array}{c} x^{:} \\ Y^{:} \\ \text{None} \end{array} \\ F_{N} - mg = 0 \\ F_{N} = mg \end{array} \end{array} \begin{array}{c} Fg = m(v^{2}/r) \\ (v^{2}/r) \text{ is centripetal acc.,} \\ \text{ so means in a circle.} \end{array}$$

$$\begin{array}{c} Y^{:} \\ T - mg = ma \\ a \text{ is } + \\ \text{ so } T = mg \end{array} \qquad \begin{array}{c} Y^{:} \\ F_{N} - mg = ma \\ a = 0, \text{ so} \\ T = mg (g = 1.63 \text{ m/s}^{2}) \end{array}$$

$$\begin{array}{c} Y^{:} \\ T - mg = ma \\ a = 0 (\Delta v = 0) \end{array} \qquad \begin{array}{c} Y^{:} \\ T - mg = ma \\ a = 0, \text{ so} \\ a = -g \end{array} \qquad \begin{array}{c} Y^{:} \\ T - mg = ma \\ a = 0 (\Delta v = 0) \end{array} \qquad \begin{array}{c} Y^{:} \\ F_{N} - mg = ma \\ a = 0, \text{ so} \\ T = mg (g = 1.63 \text{ m/s}^{2}) \end{array}$$

y: $F_N - mg = ma$ a = 0, so $F_N = mg$	y: $T_{cable} - mg = ma$
T direction: mg - T = ma Down is +	y: T direction: $F_N - mg = 0$ $T - F_f = ma$ So, $F_N = mg$ right is +
x: Tx = ma And $Tx = mgsin\theta$ $F_N - mgcos\theta = ma$ $Since a_y = 0$ $F_N = mgcos\theta$	$\begin{array}{ccc} x: & y: \\ Tx & -F_f = ma \\ And & Tx = mgsin\theta \end{array} \qquad \begin{array}{c} F_N - mgcos\theta = ma \\ Since & a_y = 0 \\ F_N = mgcos\theta \end{array}$
T direction: mg – T = ma CW (down) is +	T direction: T – mg = ma CW (up) is +
T direction: mg - T = ma Down is +	y: T direction: $F_N - mg = 0$ $T - F_f = ma$ So, $F_N = mg$ right is +