For Bim (the dog)

No friction

$\left(\mathrm{v}^{2} / \mathrm{r}\right)$ is centripetal accel
Don't use mg, since x and y are independent

$$
\begin{gathered}
\mathrm{y}: \\
\mathrm{T}-\mathrm{mg}=\mathrm{ma}
\end{gathered}
$$

$$
\begin{array}{cc}
\mathrm{y}: & \mathrm{x}: \\
\mathrm{T}-\mathrm{mg}=\mathrm{ma} & \text { none } \\
\mathrm{a}=0, \text { so } & \\
\mathrm{T}=\mathrm{mg} &
\end{array}
$$

$$
\begin{array}{cc}
\mathrm{y}: & \mathrm{x}: \\
\mathrm{F}_{\mathrm{N}}-\mathrm{mg}=\mathrm{ma} & \mathrm{~F}_{\mathrm{Bim}}-\mathrm{F}_{\mathrm{Jim}}=\mathrm{ma} \\
\mathrm{a}=0, \text { so } & \\
\mathrm{T}=\mathrm{mg} &
\end{array}
$$

y : x :
$\mathrm{F}_{\mathrm{N}}-\mathrm{mg}+\mathrm{T} \sin \theta=0 \quad \mathrm{~T} \cos \theta-\mathrm{F}_{\mathrm{k}}=\mathrm{ma}$ So,
$\mathrm{F}_{\mathrm{N}}=\mathrm{mg}-\mathrm{T} \sin \theta$

$$
\begin{gathered}
\mathrm{y}: \\
\mathrm{T}-\mathrm{mg}=\mathrm{ma} \\
\mathrm{a}=0, \text { so } \\
\mathrm{T}=\mathrm{mg}
\end{gathered}
$$

$\mathrm{x}:$	$\mathrm{y}:$
$\mathrm{T}=\mathrm{ma}$	$\mathrm{F}_{\mathrm{N}}-\mathrm{mg}=\mathrm{ma}$
$\mathrm{a}=\mathrm{neg}$	$\mathrm{a}=0$, so
	$\mathrm{F}_{\mathrm{N}}=\mathrm{mg}$

elevator:
Person:
$\begin{array}{cc}T-m g=m a & F_{N}-m g=m a \\ & a=+, \text { so } \\ & F_{N}=m g+m a\end{array}$
$\mathrm{F}_{\mathrm{f}}=\mathrm{m}\left(\mathrm{v}^{2} / \mathrm{r}\right)$ and, since gripping:

$$
\mathrm{F}_{\mathrm{s}}=\mathrm{m}\left(\mathrm{v}^{2} / \mathrm{r}\right)
$$

$\left(\mathrm{v}^{2} / \mathrm{r}\right)$ is centripetal accel

For mass if at constant speed down.

For Slim Jim

Before circle at constant speed Y -direction

For the moon around the earth

For mass if moving down and slowing

For the hanging mass

No friction

No friction
y :
$\mathrm{F}_{\mathrm{N}}=\mathrm{m}\left(\mathrm{v}^{2} / \mathrm{r}\right)$
$\left(\mathrm{v}^{2} / \mathrm{r}\right)$ is centripetal acc.,
so means in a circle.

$$
\begin{gathered}
\mathrm{y}: \\
\mathrm{T}-\mathrm{mg}=\mathrm{ma}
\end{gathered}
$$

Constant speed: $\mathrm{a}=0$, so $\mathrm{T}=\mathrm{mg}$
x:
None

$$
\mathrm{F}_{\mathrm{N}}-\mathrm{mg}=0
$$

$$
\mathrm{F}_{\mathrm{N}}=\mathrm{mg}
$$

$\mathrm{Fg}=\mathrm{m}\left(\mathrm{v}^{2} / \mathrm{r}\right)$
$\left(\mathrm{v}^{2} / \mathrm{r}\right)$ is centripetal acc., so means in a circle.

$$
\begin{gathered}
\mathrm{y}: \\
\mathrm{F}_{\mathrm{N}}-\mathrm{mg}=\mathrm{ma} \\
\mathrm{a}=0, \text { so } \\
\mathrm{T}=\mathrm{mg}\left(\mathrm{~g}=1.63 \mathrm{~m} / \mathrm{s}^{2}\right)
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{y}: \\
\mathrm{T}-\mathrm{mg}=\mathrm{ma} \\
\mathrm{a}=0, \text { so } \\
\mathrm{T}=\mathrm{mg}\left(\mathrm{~g}=1.63 \mathrm{~m} / \mathrm{s}^{2}\right)
\end{gathered}
$$

$$
\begin{array}{cc}
\mathrm{x}: & \mathrm{y}: \\
\mathrm{T}=\mathrm{ma} & \mathrm{~F}_{\mathrm{N}}-\mathrm{mg}=\mathrm{ma} \\
\mathrm{a}=0(\Delta \mathrm{v}=0) & \mathrm{a}=0, \text { so } \\
& \mathrm{T}=\mathrm{mg}
\end{array}
$$

y:
X:
$\mathrm{F}_{\mathrm{N}}-\mathrm{mg}-\mathrm{T} \sin \theta=0 \quad \mathrm{~T} \cos \theta-\mathrm{F}_{\mathrm{k}}=\mathrm{ma}$ So,
$\mathrm{F}_{\mathrm{N}}=\mathrm{mg}+\mathrm{T} \sin \theta$

4
 For the elevator

For the person between floors

For the 3 kg mass. There is no friction.
For the 3 kg mass. There is no friction.

For the left mass.

For 3 kg mass. There is friction on the table.

For 3 kg mass. There is friction on the table.
y :
$\mathrm{F}_{\mathrm{N}}-\mathrm{mg}=\mathrm{ma}$
$\mathrm{a}=0$, so
$\mathrm{F}_{\mathrm{N}}=\mathrm{mg}$

$$
\begin{gathered}
\mathrm{y}: \\
\mathrm{T}_{\text {cable }}-\mathrm{mg}=\mathrm{ma}
\end{gathered}
$$

T direction:
$\mathrm{mg}-\mathrm{T}=\mathrm{ma}$
Down is +

$$
\mathrm{y}: \quad \mathrm{T} \text { direction: }
$$

$\mathrm{F}_{\mathrm{N}}-\mathrm{mg}=0 \quad \mathrm{~T}-\mathrm{F}_{\mathrm{f}}=\mathrm{ma}$
So,
$\mathrm{F}_{\mathrm{N}}=\mathrm{mg} \quad$ right is +

X:
y:
$\mathrm{Tx}-\mathrm{F}_{\mathrm{f}}=\mathrm{ma} \quad \mathrm{F}_{\mathrm{N}}-\mathrm{mg} \cos \theta=\mathrm{ma}$ And $\mathrm{Tx}=\mathrm{mg} \sin \theta \quad$ Since $\mathrm{a}_{\mathrm{y}}=0$ $\mathrm{F}_{\mathrm{N}}=\mathrm{mg} \cos \theta$

T direction:
$\mathrm{mg}-\mathrm{T}=\mathrm{ma}$

CW (down) is +

T direction:
$\mathrm{T}-\mathrm{mg}=\mathrm{ma}$
CW (up) is +

T direction:
$\mathrm{mg}-\mathrm{T}=\mathrm{ma}$
Down is +

$$
\begin{array}{cc}
\mathrm{y}: & \mathrm{T} \text { direction: } \\
\mathrm{F}_{\mathrm{N}}-\mathrm{mg}=0 & \mathrm{~T}-\mathrm{F}_{\mathrm{f}}=\mathrm{ma} \\
\mathrm{So}, & \text { right is }+ \\
\mathrm{F}_{\mathrm{N}}=\mathrm{mg} &
\end{array}
$$

