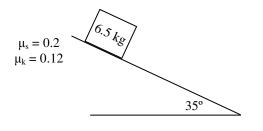
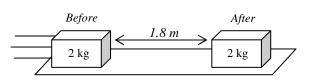

2011 PreAP Forces 12

Due Wed., Nov 2



See "Normal Force" notes if you need help.


1. A 60 kg lady is on an elevator and experiences a normal force of 820 N. A. * What is the acceleration of the elevator?

B. If the elevator is moving down, is it stopping or starting?

2. Which of the following MUST point in the same direction: mass; net force; velocity; time; force; distance; acceleration.

- 3. A. If the angle decreases, the force down the ramp:
 - B. If the angle increases the normal force:
 - C. * Calculate the object's acceleration.
 - D. * If the object is 3.5 m up the ramp and starts at rest, how fast is it going at the bottom of the ramp?

- 4. A 2 kg box slides to a stop in 0.65 seconds.
 A. * Calculate the acceleration of the object. (*Since you don't have force, use a different equation with acceleration in it.*)
 - B. Calculate the force of friction and the coefficient of friction (μ) .
- 5. What provides the centripetal acceleration for the following situations?
 - A. A car turning a corner.
 - B. The earth moving around the sun.
 - C. A ball being spun around on a string.
 - D. A roller coaster at the bottom of the track.

- 6. Slim Jim and his go-cart are280kg. He is moving 12 m/s as it moves around a circular track that has a radius of 35m.
 - A. Which way does the centripetal acceleration point?
 - B. What force provides the centripetal force that keeps the cart moving in the circle?
 - C. * Calculate the centripetal acceleration of the cart.
 - D. Calculate the force keeping the cart in the circle.
 - E. Describe the path of the car after it hits a patch of ice.

PreAP Forces 11—p2

1A) 3.7 m/s^2 3C) 4.75m/s^2 3D) 5.77 m/s use a kinematic equation 4A) -0.85m/s^2 7C) 4.1 m/s^2