Vectors Basics

We use arrows to represent vectors. Vectors have both magnitude and direction.

The result of adding together two or more vectors is called a resultant.

When adding vectors graphically, put the arrows head to tail. The resultant goes from start to finish.

Order doesn't matter when adding vectors.
The resultant will be the same.

Notice: same resultant with a different order.

Helpful Hint: Think of vectors as following directions.

(1) Start

The resultant is the result of the two motions.

Common mistake:
Do not return to the start after the first vector.

(4) Finish

Using trigonometry, we resolve non-vertical or non-horizontal vectors into x and y components.

$$
\begin{gathered}
\sin 30^{\circ}=\frac{y}{40 \mathrm{~m}} \\
y=(40 \mathrm{~m}) \sin 30^{\circ} \\
y=(40 \mathrm{~m}) 0.5=20 \mathrm{~m}
\end{gathered}
$$

Working independently in the x and y dimensions is easier than working in two dimensions.

$$
x-\text { component }=-34.6 \mathrm{~m}
$$

$$
\begin{gathered}
\cos 30^{\circ}=\frac{x}{40 \mathrm{~m}} \\
x=(40 \mathrm{~m}) \cos 30^{\circ} \\
x=(40 \mathrm{~m}) .866=-34.6 \mathrm{~m}
\end{gathered}
$$

Math and Vectors
Subtracting vectors: add its opposite (the negative of the vector).

Multiplying vectors: multiply the size of the vector.

$$
x \text { is negative because it's going left. }
$$

Components retain the units of the vector (and vice-versa).

If the vector was a plane, the x-component could be a race car trying to stay under it on the ground. The y-component could be how much fast it gains altitude.

When calculating with a vector the result is a different vector with the same direction, but different units. vector.

If you multiply the velocity vector on the right by time (2 seconds) you get a distance

OR $(71 \mathrm{~m} / \mathrm{s}) \times(2 \mathrm{sec})=142 \mathrm{~m}$
Multiplying any component of the velocity vector by time gives the correlating component of the displacement vector.

OR
A velocity triangle becomes a displacement triangle when multiplied by time.

Resolve the following vectors into their x and y-components.

18.

19.

20. An object moves at $20 \mathrm{~m} / \mathrm{s}$ at 30°.
A. Draw how far it travel in 3 second?
(Be sure to show magnitude and direction.)

21. A person walks 6 m East, 9 m North, 2 m South, 1 m West, and then 3 m North.
A) Find the total x-displacement.
B) Find the total y-displacement.
C) Using the x and y-components above, draw the resultant.
B. How far does the object travel in the x -direction during the same 3 seconds?
D) Find the resultant's magnitude and direction.

