I assume you already know the following:
$1 \mathrm{GHz}=1 \times 10^{9} \mathrm{~Hz}$
$1 \mathrm{Mg}=1 \times 10^{6} \mathrm{~g}$
$1 \mathrm{~km}=1 \times 10^{3} \mathrm{~m}$
$1 \mathrm{~cm}=1 \times 10^{-2} \mathrm{~m}$
$1 \mathrm{~mA}=1 \times 10^{-3} \mathrm{~A}$
$1 \mu \mathrm{C}=1 \times 10^{-6} \mathrm{C}$
$1 \mathrm{~nm}=1 \times 10^{-9} \mathrm{~m}$

Example 1: convert $4.98 \times 10^{3} \mathrm{cHz}$ to MHz
Convert to base units. $\frac{4.98 \times 10^{3} \times 10^{-2} \mathrm{~Hz}}{1}$
Prepare for the second conversion.

$$
\left(\frac{4.98 \times 10^{3} \times 10^{-2} \mathrm{~Hz}}{1}\right)\left(\frac{1 \mathrm{MHz}}{1 \mathrm{MHz}}\right)
$$

If this method confuses you, see below.
Change the bottom to $\mathrm{Hz}, \quad\left(\frac{4.98 \times 10 \mathrm{~Hz}}{1}\right)\left(\frac{1 \mathrm{MHz}}{1 \times 10^{6} \mathrm{~Hz}}\right)$
so they cancel.

Exponents change signs
when they move up or
down in a fraction.

$$
\left(\frac{4.98 \times 10^{3} \times 10^{-2} \mathrm{~Hz}}{1}\right)\left(\frac{1 \times 10^{-6} \mathrm{MHz}}{1}\right)
$$

Add exponents.

$$
4.98 \times 10^{1-6} \mathrm{MHz}
$$

Answer.

$$
4.98 \times 10^{-5} \mathrm{MHz}
$$

The other option for the second conversion is to memorize the following:
1 Giga $=1 \times 10^{9}$ Base Units (or 1 billion)
1 Mega $=1 \times 10^{6}$ Base Units (or 1 million)
1 Kilo $=1 \times 10^{3}$ Base Units (or 1 thousand)
1 Base Unit $=1 \times 10^{2}$ Centi (or 100)
1 Base Unit $=1 \times 10^{3}$ Milli (or 1000)
1 Base Unit $=1 \times 10^{6}$ micro (μ) (or 1 million)
1 Base Unit $=1 \times 10^{9}$ nano (or 1 billion)

Example 2: convert $8.2 \times 10^{-4} \mathrm{~km}$ to $\mu \mathrm{m}$
Convert to base units. $\frac{8.2 \times 10^{-4} \times 10^{3} \mathrm{~m}}{1}$
Add exponents and prepare
the second conversion. $\left(\frac{8.2 \times 10^{-1} \mathrm{~m}}{1}\right)\left(\frac{10^{6} \mu \mathrm{~m}}{1 \mathrm{~m}}\right)$
Add exponents

$$
\left(\frac{8.2 \times 10^{-1+6} \mu \mathrm{~m}}{1}\right)
$$

Answer.

$$
8.2 \times 10^{5} \mu \mathrm{~m}
$$

Either way is fine by me as long as you can do it. Personally, I think the second way is easier. - Murray

Do these examples: (answers on the back)

1. $4.08 \times 10^{8} \mu \mathrm{C}$ to kC
2. 0.56 mg to kg
3. 6.08 nm to cm
4. $2.27 \times 10^{-12} \mathrm{kC}$ to $\mu \mathrm{C}$
5. 0.0875 cm to km
6. $1.94 \times 10^{-8} \mathrm{MHz}$ to mHz
7. $0.35 \mu \mathrm{~g}$ to kg
8. $3.81 \times 10^{15} \mathrm{~nm}$ to Gm
9. $4.08 \times 10^{8} \mu \mathrm{C}$ to kC
$\binom{4.08 \times 10^{8} \times 10^{-6} \mathrm{C}}{1}\left(-\frac{1}{10^{3} c}\right)=\begin{aligned} & \mathrm{k} C \\ & = \\ & =4.08 \times 10^{2} \times 10^{-3} \mathrm{C}\end{aligned}$
10. $\quad 0.56 \mathrm{mg}$ to kg
$\left(\frac{.56 \times 10^{-3} \mathrm{~g}}{1}\right)\left(\frac{\mathrm{kg}}{10^{3} g}\right)=.56 \times 10^{-3} \times 10^{-3} \mathrm{~kg}=.56 \times 10^{-6} \mathrm{ky}$ or $5.6 \times 10^{-1} \times 10^{-6}=$ $5.6 \times 10^{-7} \mathrm{~kg} \leftarrow \mathrm{in}$ correct 5 ci.
11. 6.08 nm to cm
$\frac{6.08 \times 10^{-9} \mathrm{~m}}{1}\left(\frac{10^{2} \mathrm{~cm}}{1 \mathrm{~m}}\right)=6.08 \times 10^{-7} \mathrm{~cm}$
12. $2.27 \times 10^{-12} \mathrm{kC}$ to $\mu \mathrm{C}$
$\left(\frac{2.27 \times 10^{-12} \times 10^{3} \mathrm{C}}{1}\right)\left(-\frac{10^{6} \mathrm{mc}}{1 \mathrm{C}}\right)=2.27 \times 10^{-3} \mathrm{MC}$
13. 0.0875 cm to km

$$
\begin{aligned}
\left(\frac{.0875 \times 10^{-2} \mathrm{~m}}{1}\right)\left(-\frac{\mathrm{km}}{10^{3} \mathrm{~m}}=\right. & .0875 \times 10^{-2} \times 10^{-3} \mathrm{~km} \\
= & .0875 \times 10^{-5} \mathrm{~km} \mathrm{~km}^{-1} \text { or you can } \\
& 8.75 \times 10^{-2} \times 10^{-5} \mathrm{~km}=\text { stop here } \\
& 8.75 \times 10^{-7 \mathrm{~km} \mathrm{~km}} \mathrm{ci} \text {. not. }
\end{aligned}
$$

6. $1.94 \times 10^{-8} \mathrm{MHz}$ to mHz

$$
\binom{\left(1.94 \times 10^{-8} \times 10^{6}+1 z\right.}{1}\left(\frac{10^{3} \mathrm{mHz}}{1+1 z}\right)=1.94 \times 10^{-2+3} \mathrm{~Hz} \quad 1.94 \times 10 \mathrm{mtz} \text { or } 19.4 \mathrm{~Hz}
$$

8. $\quad 3.81 \times 10^{15} \mathrm{~nm}$ to Gm

$$
\begin{aligned}
\left(\frac{3.81 \times 10^{15} \times 10^{-9} \mathrm{~m}}{1}\right)\left(\frac{1}{10^{9} \mathrm{~mm}}\right) & =3.81 \times 10^{6} \times 10^{-9} \mathrm{Gm} \\
& =3.81 \times 10^{-3 \mathrm{Gm}}
\end{aligned}
$$

